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Abstract

We prove the C1 regularity and developability of W 2,m Sobolev
isometric immersions of m-dimensional domains into Rm+1. A corol-
lary is the strong density of smooth mappings in this class when the
domain is convex. We also prove that any W 2,n-isometric immersion
of Sn inside Sn+1 is a rigid motion.

1 Introduction

Function spaces with constraint arise as an important tool in the study of
qualitative features of solutions to various nonlinear and geometric PDEs
such as singularities and oscillations and the opposite phenomena such as
regularity, rigidity, compactness and convergence. An important feature in
the study of the mappings in these spaces is the interaction between their
analytical and geometric or topological properties. In this paper we con-
sider certain classes of Sobolev mappings with isometry constraint. These
constraints are naturally of geometric nature, on the derivatives, and of non-
convex nature. The main goal of our investigation is to determine whether
the rigidity properties of smooth isometric immersions [11] are inherited by
isometries of a weaker class of regularity.

Rigidity results in classical differential geometry depend heavily on the
regularity of the given mapping. For example, Kuiper showed that there are
C1 smooth isometric embeddings of the unit sphere S2 into arbitrary small
balls in R3 [7], while Hilbert had already shown that a C2 smooth isometric
immersion of the sphere in R3 is a rigid motion. Hence, from an analytical
point of view, it is natural to study the isometric immersions which enjoy a
somewhat intermediate regularity, e.g. of Sobolev type.
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Density of a suitable class of “good” functions in the space defined by a
functional is a valuable tool in calculus of variations. Usually, a smoother
class of functions constitute the natural class of good functions to consider.
The density results can be used e.g. in proving regularity results for the
critical points or in controlling the energy of the recovery sequences in the
context of Γ-convergence, for example when convergence is studied in the re-
duction from thin three-dimensional nonlinear elasticity to two-dimensional
plate or shell theories. In several instances, this question is naturally con-
nected to the topological and geometric rigidity properties of the smoother
functions. A major indication of a positive answer to the density question
is when the classical rigidity results are true for mappings of Sobolev type.

In [9] the author proved that if Ω ⊂ R2 is a Lipschitz domain, any iso-
metric immersion in W 2,2(Ω,R3) is of class C1 and is developable, i.e. it
satisfies the following property. For any x ∈ Ω, either u is affine in a neigh-
borhood of x in Ω, or it is affine on a segment passing through x and joining
Ω on both sides. Also, it was proved that if the domain Ω is convex, smooth
isometries are dense in the space of W 2,2 isometries. This result was gener-
alized by Hornung [4, 5] to other classes of domains and by Jerrard to the
class of Monge-Ampère functions [6]. Note that the Sobolev exponent p = 2
is the borderline regularity for which these results hold true. In particular,
the mapping u(r cos θ, r sin θ) = r(1/2 cos 2θ, 1/2 sin 2θ,

√
3/2) is an isomet-

ric immersion of the unit disk in R2 with a conic singularity at the origin
and enjoying W 2,p regularity for all p < 2, which cannot be approximated
by smooth isometries. Note that this mapping is a one-homogeneous ex-
tension of a smooth isometric immersion of S1, the unit circle, into S2, the
unit sphere. Compare with the situation in higher dimensions explained in
Remark 1.1.

Here, we will generalize the results of [9] to a higher dimensional setting.
We will focus on the isometric immersions of an m dimensional domain into
Rm+1 which enjoy a borderline W 2,m regularity. We will discuss questions
of regularity, rigidity and approximability by smooth mappings in these
classes. Similar problems for W 2,m-regular Sobolev isometric immersions
of m-dimensional domains into Euclidean spaces of dimension bigger than
m+ 1 are still open.

Note that, by Sobolev embedding theorems, W 2,m mappings of m di-
mensional domains are just short of being in C1. Our first result, is the
following extra regularity gain for isometric mappings.

Theorem 1. Let Ω ⊂ Rm be a bounded Lipschitz domain and let u : Ω →
Rm+1 be an isometric immersion of class W 2,m, i.e. u ∈ I2,m(Ω,Rm+1).
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Then u is of C1 regularity inside Ω.

This regularity result is a crucial ingredient in our analysis. Combined
with the developability results of [9], it yields the main result of this paper:

Theorem 2. Let Ω and u be as above. For any x ∈ Ω, either u is affine in
a neighborhood of x, or there exists a unique hyperplane P 3 x of Rn such
that u is affine on the connected component of x in Ω ∩ P .

In the course of the proof we will study of infinitesimal isometries on a
flat domain. The main observation is that u : Ω→ Rm+1 is an isometric im-
mersion only if all its components are second order infinitesimal isometries.
Consider a vector field v : Ω → Rm+1 which satisfies the following prop-
erty: There exists a vector field w : Ω → Rm+1 for which the deformation
φε := id + εv + ε2w induces a change of metric of at most order ε3 on Ω.
Through a straightforward calculation, it can be shown that V is a second
order infinitesimal isometry if and only if (v1, · · · , vm) is an affine map with
skew symmetric gradient and all the 2-minors of the Hessian matrix ∇2vm+1

vanish in Ω. We will prove the equivalent results of regularity and developa-
bility for W 2,m second order infinitesimal isometries in Propositions 7 and
8. These propositions will be the main ingredients of the proofs when we
will later study the isometric immersions of spherical domains into spherical
targets.

The developability property proved in 2 is the key to prove the density
of smooth isometries in the same class of isometries. Indeed, our conjecture
is that the developability properties proved in [11] for smooth isometric
immersions of an m-dimensional domain into Rk for k < 2m are the sufficient
conditions for approximability of Sobolev isometries by smooth isometries.
We will tackle this more general problem in future. However the following
statement can be proved in a straightforward manner following the same
footsteps for the case m = 2 in [9]. We will leave the details to the patient
reader.

Theorem 3. Let Ω be a convex domain of Rm. Then smooth isometric
immersions are strongly dense in the space of W 2,m isometric immersions
from Ω into Rm+1.

In what follows we will study isometric immersions of spherical domains
into higher dimensional spheres. As a preliminary, we first introduce some
definitions.

Given an m-dimensional compact smooth Riemannian manifold (M, g)
and f : M → R, we say f ∈ W k,p(M) if for any coordinate chart (ξ, U)
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of M and for any U ′ b U we have f ◦ ξ−1 ∈ W k,p(ξ(U ′)). Note that this
definition does not depend on the choice of g. Since M is compact we can
find a finite cover

{
U ′i b Ui

}n
i=1

and maps ξi : Ui → Rm such that (ξi, Ui)
n
i=1

is an atlas for M . Let the Banach norm of W k,p(M) be

‖u‖k,p,M :=
n∑
i=1

‖f ◦ ξ−1
i �ξi(U ′i) ‖k,p. (1)

The topology of the Banach space W k,p(M) does not depend on the choice
of the finite cover. We define then W k,p(M,Rk) to be the space of all Rk

valued mappings from M whose components are in W k,p(M).
Let (N,h) be a smooth Riemannian manifold. We say the Lipschitz map-

ping u : M → N is an isometric immersion and we denote it by I1,∞(M,N)
if for almost every x ∈ M , the tangent map du : TM → TN satisfies
〈X|Y 〉g = 〈du(x)X|du(x)Y 〉h, for all X,Y ∈ TxM .

Finally, let (N,h) be isometrically embedded in some Euclidean space
Rk. We introduce the space of W k,p-isometric immersions between M and
N to be

Ik,p(M,N) := I1,∞(M,N) ∩W k,p(M,Rk).

This function space is independent of the specific isometric embedding of N
we chose for the definition.

It is sometimes preferable to work with an equivalent norm. Indeed the
norm introduced in (1) is not an intrinsic norm, as the natural bending
of N inside Rk participates in the L2 norm of the second derivatives of u.
We write ∇ to denote the covariant derivative with respect to the metric
g on M . We would like to introduce the space I2,p

in (M,N) of all isometric
immersions u : M → N with finite p-bending energy:

Eb,p(u) = ‖D2u‖pp,in :=
∫
M

∣∣∣PTu(x)N

(
∇2u(x)

)∣∣∣p dvolM .
Here TyN is the tangent space to N at the point y and PE is the orthogonal
projection over the linear subspace E of Rk. Note that ∇ is a C∞(M)-linear
operator over the smooth vector fields of M with value in Rk, and the value
of X ·∇2u(x) ∈ Rk depends only on the value of the vector field X at x ∈M
and the value of u in a neighborhood of x. Hence for almost all x, ∇2u(x)
is a linear map from TxM to Rk and its projection over a subspace of Rk

is well defined almost everywhere. We use the usual linear operator norm
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(with respect to the scalar product induced by g on TxM). The intrinsic
norm for u ∈ I2,p(M,N) is

‖u‖2,p,in := ‖u‖W 1,p(M) + ‖D2u‖p,in. (2)

We denote by Sn the standard n-dimensional sphere and by i : Sn →
Sn+1 the natural embedding of Sn ⊂ Rn inside Sn+1 ⊂ Rn+2 defined by
i(x1, · · · , xn+1) = (x1, · · · , xn+1, 0). Let U be an open subset of Sn. We say
r : U → Sn+1 is a rigid motion if r = Ri for some R ∈ SO(n + 2). We say
S ⊂ Sn+1 is a hypersphere if it is the image of a rigid motion r : Sn → Sn+1.
Note that for any rigid motion r : Sn → Sn+1, Eb(r) = 0. The following
theorem generalized Theorems 1 and 2 to isometric immersions of spherical
domains.

Theorem 4. Let S be a domain in Sn+1 and u ∈ I2,n(S,Sn+1). Then
u ∈ C1(S). Moreover, to any x ∈ U , we can associate a rigid motion
r(x) : Sn → Sn+1 with the following property. Let

S0 := {x ∈ S : u = r(x) on a neighborhood of x}.

Then for each x ∈ S \ S0, there exists a unique hypersphere P (x) such that
u coincides with r(x) on the connected component of x in S ∩ P (x).

A similar result to Theorem 3 follows:

Corollary 5. Let U be a geodesically convex domain of Sn. Then smooth
isometric immersions are strongly dense in I2,n(S, Sn+1).

Finally, we obtain the following strong rigidity result for n > 1.

Corollary 6. Any W 2,n isometric immersion of Sn inside Sn+1 is a rigid
motion.

Remark 1.1. In view of this corollary, we cannot construct an isometric
immersion in W 2,2(B3,R4) with a conic singularity at the origin as we did
for the subcritical Sobolev exponent in [9]. The question of developability or
approximability by smooth mappings in I2,2(B3,R4) remains open.

Acknowledgments. This work was initiated during the author’s stay at
the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
The author is thankful to Jan Malý for useful discussions. The author was
partially supported by the University of Pittsburgh grant CRDF-9003034.
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2 C1 regularity

In this section we intend to prove Theorem 1.

Proposition 7. Let V ∈ W 2,m(Ω) such that rank (∇2V ) ≤ 1 a.e. in Ω,
then V ∈ C1(Ω).

Proof: Let f = ∇V and Since rank (∇2V ) ≤ 1, all the 2×2 minors of∇f
vanish almost everywhere in Ω. Hence for 1 ≤ i < j ≤ m, f i,if

j
,j − f i,jf

j
,i = 0

a.e. in Ω, where the subscript , i denotes the partial derivative in the ith
direction. Moreover by the symmetry of the ∇2V we have f i,j = f j,i. For
δ > 0, let the mapping fδ : Ω→ Rm be defined by fδ := f + δ(−xjei+xiej).
We have fδ ∈W 1,m(Ω,Rm) and a simple calculation shows that

M ij
2 (f) = (f iδ),i(f

j
δ ),j − (f iδ),j(f

j
δ ),i = δ2 > 0.

In order to prove the proposition, it is sufficient to who that h = f iδ
is continuous. We prove first the weak monotonicity of h. The argument
is similar to the proof of weak monotonicity of deformations with positive
Jacobian due to J. Manfredi [8] (see also [1], page 119). Let B ⊂⊂ Ω be an
open ball and let M = sup∂B f i and g = max{h,M}. Note that g = M on
∂B. We have

I =
∫
B

(g,i(f
j
δ ),j − g,j(f jδ ),i = 0

since g = M on ∂B and the integrand is Null-Lagrangian. On the other
hand

I =
∫
{x∈B:h(x)>M}

(h),i(f
j
δ ),j − (h),j(f

j
δ ),i = δ2|{x ∈ B : h(x) > M}|.

As a consequence |{x ∈ B : h(x) > M}| = 0. Similarly we obtain that

|{x ∈ B : h(x) < inf
∂B

h}| = 0.

Hence, for almost all (x, y) ∈ B × B, |h(x)− h(y)| ≤ diamh(∂B). In other
words

ess oscB h := ess supB×B |h(x)− h(y)| ≤ diamh(∂B). (3)

Now let 0 < r < R and let BR = BR(x) ⊂ Ω. By the Sobolev embedding
W 1,m(∂B1)→ C0,1/m(∂B1), we have after rescaling

sup
∂Bρ

|u(x)− u(y)| ≤ Cρ
(∫

∂Bρ(x)
|∇u|m dHm−1

)1/m
.
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Therefore

ln(R/r)(ess oscBr h)m ≤
∫ R

r

1
ρ
| ess oscBρ h|mdρ

≤
∫ R

r

1
ρ
| diamh(∂Bρ(x))|mdρ

≤ C
∫ R

r

(∫
∂Bρ(x)

|∇h|m dHm−1
)
dρ

≤ C
∫
BR\Br

|∇h|m .

(4)

Hence we obtain

ess oscBr(x) h ≤ CR| ln r|
−1/m → 0 as r → 0, (5)

since h ∈ W 1,m(Ω). Applying (5) to y ∈ BR/2(x) ⊂ Ω and 0 < r, r′ < R/2
we have∣∣∣∣∣−

∫
Br(y)

h−−
∫
Br′ (y)

h

∣∣∣∣∣ ≤ −
∫
Br(y)×Br′ (y)

|h(x)− h(y)| dxdy

≤ CR| ln |−1/m(max{r, r′})→ 0 if r, r′ → 0.

(6)

Hence the proper representation of h

h∗(y) := lim
r→0
−
∫
Br(y)

h,

is well defined everywhere in BR/2(y). Replacing h by h∗ and passing to the
limit r′ → 0 in (6) we obtain

| −
∫
Br(y)

h− h(y)| ≤ CR| ln r|−1/m → 0 as r → 0.

As a consequence, h is locally a uniform limit of continuous functions and
hence continuous. �

Let u : Ω → Rk be a Lipschitz immersion of Ω into Rk, and let gij =
u,i · u,j be the metric associated with u, where the subscript , i denotes the
partial derivative ∂

∂xi
.

Lemma 2.1. Let u : Ω → Rk be a smooth immersion. Then for arbitrary
1 ≤ i, j, k, l ≤ m

gij,kl + gkl,ij − gil,kj − gkj,il = −2u,ij · u,kl + 2u,il · u,kj , (7)
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and
(uij · n),k − (uik · n),j = u,ij · n,k − u,ik · n,j (8)

for any vector field n ∈W 1,2(Ω,Rk).

Proof: By twice differentiating gij we have the following identity:

gij,kl = u,ikl · u,j + uik · u,jl + u,il · u,jk + u,i · u,jkl.

Making the summation over the proper permutations of i, j, k and l proves
identity (7). The second identity is straightforward. �

Let u ∈ I2,m(Ω,Rm+1). For almost every x ∈ Ω consider the unique unit
vector n(x) ∈ Rm+1 which is orthogonal to all u,i and satisfies

det[u,1 · · · u,m n] > 0.

Note that if n =
∑
niei we have

m+1∑
i=1

niωi =
m+1∧
i=1

?u,i

where
ωi = (−1)i

∧
j 6=i

dxj

and the 1-form ?u,i =
∑
αijdx

j is given by αij = uj,i. As a consequence
n ∈ W 1,m(Ω,Rm+1). It is straightforward to observe that there is A ∈
Lm(Ω,Mm×m) such that ∇2u = −An. Indeed A = (∇u)T∇n is the so
called second fundamental form of u.

Lemma 2.2. For any simply-connected subdomain U ⊂ Ω there exists f ∈
W 1,m(U,Rm) for which A = ∇f . On the other hand all the 2-minors of A
vanish.

Remark 2.1. As A is symmetric, this implies the local existence of V ∈
W 2,m whose Hessian is A.

Proof: Consider a sequence of smooth mappings un : Ω → Rm+1 such
that un → u strongly in W 2,m(Ω,Rm+1). Apply Lemma 2.1 and pass to the
limit. (8) is established for u in the sense of distributions. However, since n
is a unit vector field, n,i ∈ L2 is orthogonal to n, hence to u,ij ∈ L2. This
yields

Aij,k = Aik,j
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which, by Poincaré’s lemma, establishes the first claim. In the same manner
(7) is established in the sense of distributions for u. However since u is an
isometric immersion gij = δij is constant in Ω. Hence for all 1 ≤ i, j, k, l ≤ m

u,ij · u,kl − u,il · u,kj = 0.

Use the identity ∇2u = −An to obtain AijAjk −AilAkj = 0.�
We conclude the proof of Theorem 1 as follows. Let uk (resp. nk) be

the kth component of u ∈ I2,m(Ω,Rm+1) (resp. of n ∈ W 1,m(Ω,Rm+1)).
We have ∇2uk = −nkA. By Lemma 2.2 uk satisfies the assumptions of
Proposition 7. Hence uk ∈ C1(Ω). �

3 Developability

In this section we prove Theorem 2. As in the previous section, the main
ingredient of the proof is the following result on the W 2,m functions whose
Hessian has rank less than or equal to 1.

Proposition 8. Let V ∈W 2,m(Ω) such that rank (∇2V ) ≤ 1 a.e. in Ω. Let

Ω0 := {x ∈ Ω : ∇V is constant in a neighborhood of x}.

Then, for any x ∈ Ω \ Ω0, there exists a unique hyperplane of Rn such that
∇V is constant on the connected component of x in P ∩ Ω.

Proof: Let f = ∇V . Let Q ⊂ Ω be an m-cube of the form Πm
i=1[ai, bi]

such that V ∈ W 2,m(Ki) for 1 ≤ i ≤ m, where ki is the i-dimensional
skeleton of Q. First we claim that the proposition is true for the domain Q.
Note that Q = Q2×Qm−2, where Qi ⊂ Ri is an i-cube. By Fubini’s theorem,
for almost any y ∈ Qm−2, ∇f i ‖ ∇f1 a.e. in Q2×{y}, g = (f1, f2)|Q2×{y} ∈
W 1,m(Q2 × {y},R2) and g has singular symmetric gradient. Let

Q0 := {x ∈ Q2 × {y} : g is constant in a neighborhood of x}.

By [9], Proposition 1.1, for any x ∈ Q2 × {y} \ Q0, g is constant on a
segment lx passing through x and joining the boundary of Q2×{y} at both
ends. Therefore, by [2], Lemma 3, we conclude that for all 1 ≤ i ≤ m,
f i is constant on the connected components of Q0 and on all lx for x ∈
Q2 ×{y} \Q0. As a conclusion, and since f is continuous by Proposition 7,
f(Q) ⊂ f(∂Q2×Qm−2). Repeating the same argument, replacing Q by m−1
dimensional faces of ∂Q2×Qm−2, we conclude that f(Q) ⊂ f(K1), where K1

is the collection of all 1-dimensional edges ofQ. As a consequence, S := f(Q)
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is of finite one dimensional Hausdorff measure. Since f ∈ W 1,m(Q,S), we
can apply the coarea formula to f , and we obtain that for almost z ∈ S,
f−1(z) is an (m− 1)-rectifiable current in Q. Let x ∈ f−1(z) for such z and
let φ : [0, 1] → f−1(z) be any Lipschitz curve with φ(0) = x. We have for
almost every t ∈ [0, 1],

0 = ∇(f ◦ φ)(t) = ∇f(φ(t))φ′(t), (9)

therefore
φ′(t) ∈ Ker∇f(φ(t)) = Im(∇f(φ(t))⊥ = (TzS)⊥.

Note that the use of the chain rule in (9) is justified by [10], Theorem 4.2.
As a consequence we obtain that φ([0, 1]) lies in the plane Px parallel to
(TzS)⊥ passing through x. Since f−1(z) is (m − 1)-rectifiable, using the
continuity of f , we obtain that the connected component of {x} in P ∩Q is
a subset of f−1(z) [3]. �.

4 Proof of Theorem 4 and Corollary 6

Proof of Theorem 4: For S, an open domain in Sn, let

S̃ := {rx ∈ Rn+1; x ∈ S, r ∈ [0, 1]}

and given u ∈ I2,n(S,Sn+1), consider the extension ũ : S̃ → Rn+2

ũ(rx) = ru(x)

for all x ∈ S and r ∈ [0, 1]. A straightforward calculation shows that ũ
is an isometric immersion in I2,n(S̃,Rn+2). Following the final calculations
in the proof of Theorem 1, all the 2-minors of the Hessian matrix of each
component ũk of ũ vanish a.e. in S̃. Moreover, for all 1 ≤ i, j, k ≤ n, ∇∂iũk
is a.e. parallel to ∇∂j ũk.

It is sufficient to prove the corollary locally around any point x ∈ S.
Without loss of generality we can assume that x = en+1 = (0, · · · , 0, 1). By
Fubini’s theorem, there exists a hyperplane P0 ⊂ Rn+1, orthogonal to the
direction en+1 and with a distance 0 < ρ < 1 from the origin such that the
following properties hold:

(1) û := ũ|S̃∩P0
∈W 2,n(S̃ ∩ P,Rn+2),

(2) All the 2-minors of the Hessian matrix of each component ûk of û
vanish a.e. in Ŝ := S̃ ∩ P0,
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(3) For all 1 ≤ i, j ≤ n, 1 ≤ k ≤ n + 1, ∇∂iûk is a.e. parallel to ∇∂j ûk
in Ŝ.

Considering û as a function of the first n coordinates (x1, · · · , xn), and
applying Proposition 7 to each component of û we conclude that û ∈ C1(Ŝ).
Moreover Proposition 8 and [2], Lemma 3 imply the existence of a subset
Ŝ0 ⊂ Ŝ such that û is affine in Ŝ0 and for any point x ∈ Ŝ0, there exists
a unique n − 1 dimensional plane P1(x) ⊂ P0 such that û is affine on the
connected component of Ŝ∩P1. Notice that ũ is a 1-homogeneous mapping,
and therefore û(rx) = u(x) for all rx ∈ Ŝ. A simple geometric observation
completes the proof. �

Proof of Corollary 6: This is a straightforward consequence of Theo-
rem 4 and the fact that any two copies of Sn−1 in Sn intersect. �

5 Appendix

Here we will give another proof of Proposition 7 for even m. It would
be interesting to see if this method can be adapted to the odd case. For
A ∈Mm×m, we denote by Âij the (m− 1)× (m− 1) matrix obtained from
A by eliminating the ith row and the jth column.

Lemma 5.1. Let m be an even positive integer and let B = [bij ]m×m be the
skew-symmetric matrix defined by bij = 1 − δij for i ≥ j. Then detB = 1
and det B̂ij + det B̂ji = 0 for all 1 ≤ i, j ≤ m. In particular det B̂ii = 0.

Proof: We calculate detB by Gaussian elimination. Let Ri denote the
ith row of B.

detB = det


R1

R2 −R3
...

Rm−1 −Rm
Rm

 = −det


Rm

R2 −R3
...

Rm−1 −Rm
R1



= −det



Rm
R2 −R3

...
Rm−1 −Rm

R1 −

1
2m−1∑
i=2

(R2i −R2i+1)


= det



−Rm
R2 −R3

...
Rm−1 −Rm
m−1∑
i=1

(−1)i+1Ri


.
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The last matrix is an upper triangular matrix whose diagonal entries
are all equal to −1 since m is even. Hence detB = (−1)m = 1. On the
other hand, B̂ij = −B̂T

ji for all i, j. Hence det B̂ij = (−1)m−1 det B̂ji which
concludes the proof. �

Proof of Proposition 7 for even m: Write f = ∇V ∈ W 1,m(Ω,Rm)
and fδ = f + δb ∈W 1,m(Ω,Rm), where b : Ω→ Rm is the left multiplication
by the skew symmetric matrix B introduced in Lemma 5.1. We have ∇fδ =
∇f + δB. Since all the minors of order ≥ 2 of ∇f = ∇2V vanish, and since
A = [Aij ] = ∇f is symmetric we obtain

det(∇fδ) = det(A+ δB) = δm detB + δm−1

 m∑
i,j=1

(−1)i+jAij det B̂ij


= δm > 0.

Hence fδ is a deformation of Ω ⊂ Rm in Rm with a.e. positive Jacobian.
By [12] fδ is open and continuous. Hence f = ∇V is continuous. �
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