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Abstract We show that an isometric immersion y from a two-dimensional domain
S with C1,α boundary to R

3 which belongs to the critical Sobolev space W 2,2 is
C1 up to the boundary. More generally C1 regularity up to the boundary holds
for all scalar functions V ∈ W 2,2(S) which satisfy det ∇2V = 0. If S has only
Lipschitz boundary we show such V can be approximated in W 2,2 by functions
Vk ∈ W 1,∞ ∩ W 2,2 with det ∇2Vk = 0.

1. Introduction

In this paper we study isometric immersions y from a two-dimensional set S to
R

3 which are in the Sobolev class W 2,2, i.e. ∇2y is in L2 (this is equivalent to the
condition that the second fundamental form A is in L2). The motivation to study
this class arises on the one hand from geometry (where the class W 2,2 corresponds
to an interesting borderline case) and on the other hand from nonlinear plate the-
ory, where the W 2,2 isometric immersions form the natural class of admissible
functions.

Regarding geometry it is well known that C2 isometric immersions have a
good classification and enjoy strong rigidity properties while the celebrated results
of Nash [6] and Kuiper [11] show that C1 isometric immersions can be much more
complicated (e.g. the image of S2 can be contained in an arbitrarily small ball). The
class W 2,2 lies somewhat in between. We have information on second derivatives,
but only in an integral sense (C1 surfaces with even weaker properties have been
studied by Pogorelov [16], [17, Chapter IX]). As we will see in this class the usual
geometric properties still hold, in particular the image is a ruled surface (see Theo-
rem 4 below). This is no longer true if we make the slightly weaker assumption that
∇2y is in Lp, for all p < 2. In that case a conical singularity can occur (consider
e.g. polar coordinates (x1, x2) = (r cos ϕ, r sin ϕ) and the one-homogeneous map
y(x) = ( 1

2 r cos 2ϕ, 1
2 r sin 2ϕ, 1

2

√
3r)).
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Regarding elasticity, the above class arises naturally in the geometrically non-
linear theory of plates, first formulated by Kirchhoff [10] and recently rigorously
derived from three dimensional nonlinear elasticity by variational methods [2] (for a
derivation under more restrictive hypotheses see [14,15]). In this theory the admis-
sible maps are isometric immersions and the energy is

∫
S

Q2(A) where A is the
second fundamental form and Q2 is a positive definite quadratic form. From this
one easily sees that finite energy implies y ∈ W 2,2 (see [2], Remark (vii) after
Theorem 6.1).

In general maps in W 2,2 just fail to be in C1 (critical Sobolev embedding). This
first main result asserts that isometric immersions are in C1 up to the boundary, if
S is sufficiently regular (for Lipschitz S the gradient may blow up at the boundary,
see Remark 7 below).

Theorem 1. Suppose that α > 0 and that S ⊂ R
2 is a bounded domain with C1,α

boundary, i.e. ∂S can be covered by finitely many charts in which ∂S is a C1,α

graph and within each chart S lies above that graph. Let y ∈ W 2,2(S, R
3) be an

isometric immersion, i.e (∇y)T ∇y = Id almost everywhere. Then y is C1 up to
the boundary, with a logarithmic modulus of continuity. More precisely there exists
a constant (depending only on S) such that for r < R/4 < R0(S) and for every
x ∈ S

oscB(x,r)∩S ∇y ≤ C ln−1/2(R/r)||∇2y||L2(B(x,R)∩S)

= C ln−1/2(R/r)||A||L2(B(x,R)∩S).

Here oscB(x,r) f denotes the oscillation of f on a ball of radius r around x, i.e.
the diameter of the image f (B(x, r)). To prove this estimate we use the fact that
each component of yk of y satisfies det ∇2yk = 0 (this is classical for smooth iso-
metric immersions, for the W 2,2 case see Proposition 3 below). We then establish
the oscillation estimate for ∇V for all scalar functions V ∈ W 2,2(S) which satisfy

det ∇2V = 0, (1)

see Theorem 6 below. Equation (1), which is equivalent to the fact that the Gauss
curvature of graph V vanishes, also plays an important role in the study of isome-
tries which are close to the trivial map x �→ (x, 0). To study them it is natural to
consider the ansatz

y(x) =
(

x + δ2U(x)

δV (x)

)

, where U : S → R
2, V : S → R. (2)

The condition that y is an isometry becomes

δ2(∇U + (∇U)T + ∇V ⊗ ∇V ) + δ4(∇U)T ∇U = 0, (3)

and it is natural to consider the formal linearization

∇U + (∇U)T + ∇V ⊗ ∇V = 0. (4)

Suppose that V ∈ W 2,2 is given. Then one can easily check that (1) is a necessary
and sufficient condition for the existence of a U satisfying the linearized relation (4).
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If in addition δ|∇V | < 1 then the same condition is necessary and sufficient for
the existence of a U satisfying the full isometry condition (3) (see [4]).

Thus one is interested whether condition (1) already implies that V is Lipschitz.
For C1,α domains one even has C1 regularity up to the boundary (see Theorem 6
below). For Lipschitz domains, however, ∇V may be unbounded, see Remark 7
below. We show that nonetheless ∇V can be approximated in W 2,2 by Lipschitz
functions which still satisfy (1).

Theorem 2. Suppose that S ⊂ R
2 is a bounded Lipschitz domain and V ∈ W 2,2(S)

satisfies

det ∇2V = 0.

Then there exists an increasing sequence of open subsets Sk and maps Vk ∈ W 2,2(S)

such that

||∇Vk||L∞(S) ≤ k, Vk = V in Sk,

∇2Vk = 0 a.e. on S \ Sk,

∞⋃

k=1

Sk = S.

In particular we have det ∇2Vk = 0, ||∇Vk||L2 ≤ ||∇V ||L2 and Vk → V in
W 2,2(S).

Applications of these results to the derivation of plate theories from three dimen-
sional nonlinear elasticity and to the stability analysis of plates are discussed in
[4,5].

2. Properties of W 2,2 isometric immersions and solutions of det ∇2v = 0

Following [4] we first review some general properties of isometric immersions for
the convenience of the reader. These properties are classical for smooth maps, but
we will need them for W 2,2 maps. For a general W 2,2 map y : S → R

3 we define
the induced metric by gij = y,i · y,j and we set n = y,1 ∧ y,2 and

Aij = −y,ij · n. (5)

If y is an isometric immersion, i.e. if gij = δij , then n is the normal to the image
of y and A is the second fundamental form.

Proposition 3. Suppose that S is a bounded Lipschitz domain and y ∈ W 2,2(S; R
3)

is an isometric immersion. Then

y,ij = −Aijn, (6)
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Ai1,2 = Ai2,1, for i = 1, 2, (7)

in the sense of distributions. Moreover

det A = 0. (8)

Proof. This follows from standard approximation arguments. Since gij = δij we
have |n| = 1. Differentiation of gij yields after a short calculation that y,ij ·y,k = 0
a.e. Thus y,ij is parallel to n and this proves (6). To establish (7) first note that for
smooth y we have the identity

Ai1,2 − Ai2,1 = −y,i1 · n,2 + y,i2 · n,1 (9)

By approximation this identity holds in the sense of distributions if y ∈ W 2,2. By
(6) the vector y,ij is parallel to n (a.e.), but n,k is perpendicular to n, since |n| = 1.
This proves (7).

Finally to establish (8) we start from the identity

g11,22 + g22,11 − 2g12,12 = 2y,12 · y,12 − 2y,11 · y,22. (10)

This holds pointwise for smooth y and by approximation it holds in the sense of
distribution for y ∈ W 2,2. For an isometric immersion the left hand side vanishes
and together with (6) this proves (8). �


If y is smooth then one can deduce from (8) that locally the image of ∇y is
either a constant or a smooth curve. In the latter case one can further conclude that
∇y is constant on lines defined by the kernel of A. For C2 isometric immersions
this assertion is contained in the more general results of Hartman and Nirenberg [7].
Pogorelov [16, Chapter II], [17, Chapter IX] has obtained the same result under very
weak hypotheses. He only requires that the immersion is C1 and that the image of
the Gauss map has measure zero in S2. A short proof under the stronger hypothesis
that the isometric immersion is in W 2,2 was recently given by Pakzad [13], using
an idea of Kirchheim [9]. For later use we state his result both for functions (with
det ∇2V = 0) and for isometric immersions.

Theorem 4. [13] Let S be a bounded Lipschitz domain. Suppose that V ∈ W 2,2(S)

with det ∇2V = 0. Consider the open set

S1 = {x ∈ S : ∇V is constant in a neighbourhood of x}. (11)

Then through every point x ∈ S \S1 there exists a line segment which intersects ∂S

at both ends and on which ∇V is constant. Different line segments do not intersect
in S.

The same characterization holds for an isometric immersion in W 2,2(S; R
3).

Even though a general function in W 2,2(S) need not be C1 for isometric immer-
sions (and more generally for solutions of det ∇2V = 0) one can easily obtain an
interior C1 estimate.
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Proposition 5. Suppose that V ∈ W 2,2(S) and det ∇2V = 0. Then V ∈ C1(S). If
Bρ(x) ⊂ BR(x) ⊂ S we have more precisely

oscBρ ∇V ≤ C(ln
R

ρ
)−1/2||∇2V ||L2(BR), (12)

where oscBρ f := diam f (Bρ).

Proof. Following Kirchheim we set f = ∇V and g(x) = f (x) + δ(−x2, x1) and
g is in the borderline space W 1,2. By a result of Vodopyanov and Goldstein [19]
g is therefore continuous (see also [18,8,1]). In fact g is a monotone map, i.e.
oscBr g = osc∂Br g, for all r . From this one easily sees that g and hence f have the
asserted modulus of continuity (see [12], Thm. 4.3.4). We sketch the details for the
convenience of the reader. By Fubini’s theorem g belongs to W 1,2(∂Br ; R

2) for
almost every r . The Sobolev embedding theorem applied to the one-dimensional
set ∂Br yields, for a.e. r ∈ (ρ, R)

oscBρ g ≤ oscBr g = osc∂Br g ≤ √
r

(∫

∂Br

|∇g|2
)1/2

.

Now take squares, divide by r and integrate from ρ to R. This gives the estimate
for g and the one for f follows by letting δ go to zero. �


3. C1 estimates up to the boundary

In this section we establish the following estimate.

Theorem 6. Suppose that α > 0 and S ⊂ R
2 is a bounded domain with C1,α

boundary. Suppose V ∈ W 2,2(S) satisfies

det ∇2V = 0.

Then V is C1 up to the boundary and there exist constants R0(S), C(S) (depending
only on S) such that for r < R/4 < R0(S) and for every x ∈ S

oscB(x,r)∩S ∇V ≤ C(S) ln−1/2(R/r)||∇2V ||L2(B(x,R)∩S)

This implies in particular Theorem 1 since by (6) and (8) each component yk

of an isometric immersion satisfies det ∇2yk = 0. Moreover (6) also shows that
|∇2y| = |A|.

Remark 7. The result does not hold for Lipschitz domains. Consider for example
the truncated cone {(x1, x2) : x1 ∈ (−1, 1), |x1| < x2 < 1} and V (x) = v(x2) with
v′(0) = ∞ and

∫ 1
0 t |v′′(t)|2 < ∞. One may take e.g. v′(t) = | ln t |α , 0 < α < 1/2.

A slight modification shows that even C1 domains are not sufficient. One needs a
certain logarithmic modulus of continuity of the normal.
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The proof of Theorem 6 uses the condition det ∇2V = 0 only to deduce the
existence of the line segments which appear in Theorem 4. To stress this and in view
of possible future applications we will in the following only use this condition. We
say that a function f : S → R

2 satisfies condition (L) if the following holds:

Let S1 be the open set on which f is locally constant. Then through every
point x ∈ S \S1 there exists a line segment which intersects ∂S at both ends
and on which f is constant. Different line segments do not intersect in S.

To prove Theorem 6 we first use the condition (L) together with the Poincaré
inequality to derive an oscillation bound on half-discs. The main point is then to
establish the oscillation bound on line segments normal to the boundary. For this
it suffices to consider domains whose boundary is a ‘parabola’ x2 = |x1|1+α and
we study these in Lemma 9. The heuristic idea is simple. Suppose for simplicity
that through every point there is a line segment on which f := ∇V is constant.
If these line segments intersect the boundary transversally at a point x̄ then their
length is bounded from below and one can apply the Poincaré inequality normal to
the line segments to obtain an oscillation bound. Suppose now that the slope of the
line segments approaches that of the tangent at x̄. In the extreme case that all line
segments are parallel to the tangent we are exactly in the situation of Remark 7,
but now the C1,α regularity of the boundary implies that the length of the segments
scales like x

1/1+α
2 where x2 is the normal variable. Hence one obtains a less degen-

erate weight in the one-dimensional estimate and one easily obtains the oscillation
estimate from the Cauchy-Schwarz inequality. The estimates (25)–(27) capture this
fact in the general situation where the lines may not all be parallel to the tangent.

We begin with the oscillation estimate on half-discs B+(x, r) = {y ∈ R
2 :

|y − x| < r, y2 > x2}.
Proposition 8. Suppose that f ∈ W 1,2(S, R

2) has property (L) and that the closure
of B+(x, R) is contained in S. Then for all r < R/2

oscB+(x,r) f ≤ C ln−1/2
(

R

r

)

||∇f ||L2(B+(x,R)). (13)

Proof. We may suppose without loss of generality that the half-discs are centered
at zero. Moreover it suffices to compare f (0) to f (y) with |y| < r . Suppose first
that both through 0 and through y there exist a line segment on which f is constant
and denote them by l0 and l. In polar coordinates (ρ, ϕ) the first segment is given by
ϕ = ϕ0 while the part of the second segment which lies in the annulus r < ρ < R

can be decribed by a bounded function ϕ = h(ρ). An application of the Poincaré
inequality in polar coordinates yields

|f (y) − f (0)|2 ≤ C|h(ρ) − ϕ0|ρ
∫

∂Bρ∩B+
R

|∇f |2 dH1

Dividing by ρ and integrating over ρ from r to R we obtain (13).
If 0 or y belong to the set S1 where f is locally constant consider the segment

from 0 to y. If all points on this segment belong to S1 then f (0) = f (y). Otherwise
let p and q be the points on the intersection of the segment and ∂S1 which are
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closest 0 and y, respectively. Then f (p) = f (0), f (q) = f (y). Let R′ = R −|p|,
r ′ = r − |p|. Then q ∈ B+(p, r ′) and the closure of B+(p, R′) is contained in S.
Hence by the previous argument we obtain the desired bound with R/r replaced
by R′/r ′. Since the latter quantity is bigger than or equal to the former this finishes
the proof. �


We next estimate the oscillation in normal direction. For this it suffices to con-
sider a parabola shaped domain, see Fig. 1.

Lemma 9. Consider the domain

� = {(x1, x2) : x1 ∈ (−2, 2), |x1|1+α < x2 < 21+α}.

Suppose that f ∈ W 1,2(�; R
2) has the property (L) (with respect to �) and con-

sider

F(t) = f (0, t).

Then

|F(t) − F(t ′)| ≤ C ln−1/2
(

1

|t − t ′|
)

||∇f ||L2(�), ∀t, t ′ ∈ (0, 1). (14)

2

t

−2

�(t)

x1

x2

−l−(t) l+(t)

Fig. 1 The parabolic domain � and the domains �(t) generated by line segments through
the points (0, t)
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Proof. We first prove the result under the additional assumption that through every
point (0, t) (with t ≤ 1) there is a line segment (touching ∂� at both ends) on which
f is constant. Let s(t) be the slope of this segment and let −l−(t) and l+(t) denote
the x1 coordinates of the left and right intersection point of the segment with ∂�.
Let further �(t) denote the area under the line segment (see Figure 1) and set

G(t) =
∫

�(t)

|∇f |2 dx.

We will show that F, G and s are absolutely continuous and satisfy, for a.e. t ∈
(0, 1),

|Ḟ | ≤ |Ġ|1/2(1 + s2(t))−1/2h−1/2(t), (15)

where

h(t) ≥ 1

|ṡ(t)| ln(1 + |ṡ(t)|l̄(t)) (16)

and l̄(t) = max(l−(t), l+(t)). Together with simple geometric estimates on l+ and
l− and a short calculation (see Proposition 10 below) this will imply (14).

Step 1. Estimates for l± and a W 1,1 estimate for β = arctan s.
Note first that we can assume that the slope s is finite at each point (0, t).

Otherwise f is constant on the segment t �→ (0, t) and there is nothing to show.
Assume for the moment s ≥ 0. If the line segment through (0, t) does not intersect
the upper boundary x2 = 21+α then l±(t) are given by the equations

t + sl+ = (l+)1+α, t − sl− = (l−)1+α.

Thus

l+ ≥ t1/(1+α),

l− ≥ min
(
t/(2s), (t/4)1/(1+α)

)
. (17)

If the line segment does intersect the upper boundary x2 = 21+α then l+ ≥ 1/s

(here and in the following we always assume t ≤ 1). Hence we always have, for
s(t) ≥ 0,

l+(t) ≥ min
(
s−1, t1/(1+α)

)
(18)

For s(t) < 0 the roles of l+ and l− are interchanged.
By property (L) different line segments do not intersect in �. From this we

easily conclude that s is locally Lipschitz and

|ṡ| ≤ 1

min(l−, l+)
.

To obtain better integral estimates for ṡ we first show that |s| is almost increasing
in t . Suppose again that at the point t we have s(t) < 0. Then the upper derivative

ṡ+(t) := lim sup
τ→0

max

(
s(t + τ) − s(t)

τ
, 0

)



Regularity properties of isometric immersions 321

satisfies

ṡ+ ≤ 1

l−
≤ max(t−1/1+α, s).

Combining this with an analogous estimate for ṡ− if s(t) ≥ 0 we get

− d

dt
|s| ≤ max(t−

1
1+α , |s|). (19)

From this we easily deduce that the function t �→ et (|s|(t)+ 1+α
α

tα/1+α) is increas-
ing and we obtain a W 1,1 bound for this function (and hence for |s| and s) in terms
of s(1), the slope at t = 1. This slope, however, cannot be controlled in terms of
∇f alone and it is therefore more convenient to work with the angle

β = arctan s

instead of the slope. From (19) we get

− d

dt
|β| = − 1

1 + s2

d

dt
|s| ≤ t−

1
1+α , for t ∈ (0, 1).

Thus d
dt

|β| ≥ −t−1/(1+α) and hence σ = |β| + 1+α
α

tα/(1+α) is monotone. Since β

takes values in (−π/2, π/2) we get
∫ 1−ε

ε

|σ̇ | = σ(1 − ε) − σ(ε) ≤ π/2 + 1 + α

α
.

Thus we can take ε = 0 and we deduce that
∫ 1

0
|β̇| dt =

∫ 1

0
||β|·| dt ≤ π/2 + 2

1 + α

α
≤ C. (20)

Step 2. The function

G(t) =
∫

�(t)

|∇f |2 dx

is absolutely continuous. To see this let

U = {(y1, y2) : −l−(y2) < y1 < l+(y2), 0 < y2 < 1}
and consider the change of variables � : U → �(1) given by

�

(
y1

y2

)

=
(

0

y2

)

+ y1

(
1

s(y2)

)

. (21)

Thus the image of y1 �→ �(y1, y2) is exactly the line segment through (0, y2) on
which f is constant. Since these line segments do not intersect � is a bijection.
Moreover

∇�(y) =
(

1 0
s(y2) 1 + y1ṡ(y2)

)

, det ∇�(y) = 1 + y1ṡ(y2).
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In fact non-intersection of the line segments implies that 1 + y1ṡ(y2) > 0 in U , so
that � is locally Bilipschitz. Thus the area formula yields

G(t) =
∫ t

0

∫ l+(y2)

−l−(y2)

|∇f |2(�(y1, y2))(1 + y1ṡ(y2)) dy1 dy2.

Since the integrand is nonnegative and G(t) ≤ G(1) ≤ C Fubini’s theorem shows
that the inner integral defines a function in L1(0, 1). Thus G ∈ W 1,1(0, 1) and

Ġ(t) =
∫ l+(t)

−l−(t)

|∇f |2(�(y1, y2))(1 + y1ṡ(y2)) dy1, (22)

∫ 1

0
|Ġ| dt =

∫ 1

0
Ġ dt = G(1) ≤

∫

�

|∇f |2 dx. (23)

Step 3. Estimates of Ḟ in terms of Ġ.
By the definition (21) of � we have

F(y2) = f (�(y1, y2)) for y ∈ U. (24)

Since � is locally Bilipschitz the function f ◦� is in W
1,2
loc and thus absolutely con-

tinuous on a.e. interior line segment in y2 direction. Thus F is absolutely continuous
on every interval (ε, 1 − ε), with ε > 0, and by the chain rule

Ḟ (y2) = (∂2f )(�(y))(1 + y1ṡ(y2))

for a.e. y2. Differentiating (24) with respect to y1 we see that

0 = (∂1f )(�(y)) + s(y2)(∂2f )(�(y)).

Thus

|Ḟ |(y2) ≤ (1 + s2(y2))
−1/2|∇f |(�(y))(1 + y1ṡ(y2)). (25)

Let

h(y2) =
∫ l+(y2)

−l−(y2)

dy1

1 + y1ṡ(y2)
. (26)

Now divide (25) by (1 + y1ṡ(y2)), integrate in y1 and use the Cauchy-Schwarz
inequality in connection with (22). This yields

|Ḟ |(y2)h(y2) ≤ (1 + s2(y2))
−1/2|Ġ(y2)|1/2h−1/2(y2) (27)

and hence (15). To verify (16) it suffices to restrict the integral in (26) to (0, l+(y2))

or to (−l−(y2), 0).
To prove (14) we use the change of variables s = tan β and obtain

|Ḟ | ≤ ω1/2|Ġ|1/2, (28)
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where

ω(t) = ṡ(t)

1 + s2(t)

1

ln(1 + l̄(t)|ṡ(t)|) = |β̇(t)|
ln(1 + (1 + s2(t))l̄(t)|β̇(t)|) .

If s ≥ 0 we can now apply (18) to estimate l+ from below; is s < 0 we have a
similar bound for l−. Thus in eihter case we get

(1 + s2(t))l̄(t) ≥ min

(
1 + s2(t)

s(t)
, t

1
1+α

)

≥ t
1

1+α .

Now using (28) and (23) we get

|F(t0 + τ) − F(t0)| ≤
(∫ t0+τ

t0

|β̇|
ln(1 + t1/(1+α)|β̇|) dt

)1/2

||∇f ||L2(�)

and the assertion (14) follows from the L1 bound (20) on β̇ and Proposition 10
below.

Step 4. It remains to remove the additional assumption that through every point
(0, t) there exists a line segment (touching ∂� on both ends) on which f is con-
stant. Let �1 be the open set on which f is locally constant. Then the line segments
considered above exist only for (0, t) ∈ E = ({0} × (0, 1)) \ �1. Hence the slope
function is only defined on E. On the maximal intervals (a, b) of �1 ∩({0}×(0, 1))

we define an interpolation as follows. If s(a) = s(b) set s̃ = s(a) = s(b) in (a, b).
If s(a) �= s(b) let x̄ = (x̄1, x̄2) denote the intersection point of the lines through
(0, a) and (0, b). Note that this intersection point must lie outside � by property
(L). Define s̃(t) such that the line through (0, t) goes through x̄, i.e.

s̃(t) = x̄2 − t

x̄1
, for t ∈ (a, b).

In particular s̃ is affine on (a, b) and satisfies the same estimates as the function s

considered in Step 1.
Thus if we define � using the extension s̃ then � is again a bijection and locally

Bilipschitz, and (22) and (24) hold. Thus F is absolutely continuous (on compact
subintervals) and (25) holds with s replaced by s̃. Now we can conclude as before.
�

Proposition 10. Let β ∈ W 1,1(0, 1), 0 < γ < 1. If 0 < t0 < t0 + τ < 1 then, for
all η ∈ (γ, 1),

∫ t0+τ

t0

|β̇|
ln(1 + tγ |β̇|) dt ≤ 1

(η − γ )

1

ln(1/τ)

∫ 1

0
|β̇| dt + 1

1 − η

1

ln 2
τ 1−η. (29)

Proof. After replacing β(t) by β(t0 + t) we may suppose t0 = 0. We subdivide
(0, τ ) as follows

E1 = {t ∈ (0, τ ) : |β̇| ≤ t−η}, E2 = {t ∈ (0, τ ) : |β̇| > t−η}.
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Since x �→ ln(1 + x) is concave on R+ we have

ln(1 + x) ≥ ln(1 + y)

y
x, if 0 < x ≤ y.

Applying this with x = tγ |β̇| and y = tγ−η we see that on E1 the integrand is
bounded by

|β̇|
tγ |β̇|

tγ−η

ln(1 + tγ−η)
≤ 1

ln 2
t−η.

On E2 the integrand is trivially bounded by

|β̇|
ln(1 + tγ−η)

≤ |β̇|
(η − γ ) ln(1/τ)

.

Thus (29) follows. �

We are now in a position to combine the local results to obtain the global

estimate.

Proof of Theorem 6. First note that we may assume without loss of generality that
S is such that at each boundary point p the set S contains the parabolic domain
� (up to rigid motions) considered in Lemma 9. Indeed, by assumption there
exists a radius r0 and a Hölder constant M such that for each boundary point
p there exists an orthornomal coordinate system and a C1,α function g such that
p = (0, 0), ∂S∩B(0, r0) ⊂ graph g, S∩B(0, r0) lies above graph g, g′(0) = 0 and
|g′(x1) − g′(y1)| ≤ M|x1 − y1|α . Now let R = 41+α max(r0, M

1/α) and consider
the rescaled set RS. Then at each boundary point of RS the set RS contains the
desired standard parabola � (up to a rigid motion). Hence we can work with RS and
rescale at the end (note that this only effects the radius R0(S) in the statement since
the constant C in the oscillation estimate is invariant under dilations). Note also
that using the same rescaling we may in addition assume that the Hölder seminorm
of g′ is bounded by 1.

Now consider points p, q ∈ S. We may assume that dist(p, ∂S) ≥ dist(q, ∂S)

and we set

d = dist(p, ∂S) ≥ dist(q, ∂S), r = |p − q|.
We claim that for r ≤ r̄ (where r̄ is a constant only depending on S) we have

|f (p) − f (q)| ≤ C ln−1/2(1/r). (30)

Case 1. Suppose r ≤ d/4. If d ≥ 1 we can use the interior estimate (12) since
q ∈ B(p, r) and B(p, d) ⊂ S. If d < 1 let p̄ be a boundary point which has
minimal distance to p and consider a coordinate system centered at p̄. Thus p has
coordinates (0, d). Let p′ = (0, d − 2r). Then |p′ − q| ≤ 2r + |p − q| ≤ 3r . Thus
p, q ∈ B+(p′, 3r). On the other hand the parabola � and hence the set S contains
the half-disc B+(p′, R) with R = (d − 2r)1/(1+α) ≥ r1/(1+α). Thus (30) follows
from Proposition 8.
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Case 2. Suppose that d = 0, i.e. p, q ∈ ∂S.
Let νp and νq denote the inner normals at p and q, respectively, and set

p′ = p + 16rνp, q ′ = q + 16rνq .

Since |νp −νq | ≤ rα we may suppose that |p′ −q ′| ≤ 2r . Moreover dist(p′, ∂S) ≥
8r and dist(q ′, ∂S) ≥ 8r (for sufficiently small r). Hence by Case 1

|f (p′) − f (q ′)| ≤ C ln−1/2(1/r).

On the other hand Lemma 9 shows that |f (p′) − f (p)| ≤ C ln−1/2(1/16r) and
the same estimate holds for f (q) − f (q ′). Thus (30) follows.

Case 3. Suppose d < 4r .
Let p̄, q̄ points on ∂S which have minimal distance from p and q, respectively.

Then |q − q̄| ≤ |p − p̄| ≤ d . Thus |p̄ − q̄| ≤ r + 2d ≤ 9r . Now f (p̄) − f (q̄) can
be estimated as in Case 2, while f (p) − f (p̄) and f (q) − f (q̄) are estimated by
Lemma 9. This finishes the proof of (30) and hence of Theorem 6. �


4. Approximation by Lipschitz functions

In this section we prove the following approximation result, stated already in the
introduction as Theorem 2.

Theorem 11. Suppose that S ⊂ R
2 is a bounded Lipschitz domain and V ∈

W 2,2(S) satisfies

det ∇2V = 0.

Then there exists an increasing sequence of open subset Sk and maps Vk ∈ W 2,2(S)

such that

||∇Vk||L∞(S) ≤ k, Vk = V in Sk, (31)

∇2Vk = 0 a.e. on S \ Sk, (32)

∞⋃

k=1

Sk = S. (33)

In particular we have det ∇2Vk = 0, ||∇Vk||L2 ≤ ||∇V ||L2 and Vk → V in
W 2,2(S).

Remark 12. If � ⊂ ∂S is a finite union of intervals and the trace of ∇V on ∂S

satisfies ||∇V ||L∞(�) ≤ M then Vk = V and ∇Vk = ∇V in an open subset of S

(with Lipschitz boundary) whose boundary contains � for sufficiently large k. In
particular the equality holds in the sense of trace on �.
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Proof. We will use the assumption det ∇2V = 0 only to conclude that V ∈ C1(S)

(see Proposition 5) and that at each point x ∈ S either ∇V is locally constant or ∇V

is constant on a line segment through x which intersects ∂S at both ends (Condition
(L)). Note that both these properties remain true if we subtract an affine function
from V .

Let U be an open ball whose closure is contained in S. After subtracting an
affine map from V we may suppose that

∫

U

∇V dx = 0.

Together with the interior estimate (12) this shows that

|∇V | ≤ C in U.

Now consider the set Uk = {x ∈ S : |∇V (x)| < k}. This set is open since
V ∈ C1(S) by Proposition 5 and for large enough k it contains U . Let Sk denote
the connected component of Uk which contains U .

Step 1. We claim that

(i) ∂Sk ∩ S is a union of line segments on which ∇V is constant and satisfies
|∇V | = k. Moreover each segment intersects ∂S at both of its endpoints;

(ii) ∪∞
k=1Sk = S.

To verify this consider x̄ ∈ ∂Sk ∩S. By the continuity of ∇V we have |∇V |(x̄) = k.
Thus ∇V cannot be locally constant near x̄ (otherwise x̄ /∈ ∂Sk). Hence by Theo-
rem 4 there exists a line segment l which intersects ∂S at both endpoints and along
which ∇V is constant. In particular |∇V | = k on l so that l ∩ Sk = ∅. We claim
that l ⊂ ∂Sk . To see this note that there exists a sequence of points xj ∈ Sk with
xj → x̄ such that ∇V is constant on a line segment lj through xj (which extends
up to ∂S). We can take, for examle, xj as a point in {x ∈ Sk : |∇V (x)| ≤ k − 1/j}
which has minimal distance from x̄. In view of this minimality property ∇V can-
not be constant near xj and hence the desired line segment lj exists. The segments
lj cannot intersect l (in S) and their lengths are bounded from below. Thus they
must converge to l (e.g. in the Hausdorff sense) since xj → x̄. Since lj ⊂ Sk and
l ∩ Sk = ∅ we conclude that l ⊂ ∂Sk .

It remains to show that the Sk exhaust S. Since V ∈ C1(S) we have |∇V | = k

on ∂Sk ∩ S and thus

dk := sup
x∈∂Sk

dist(x, ∂S) → 0. (34)

Thus ∂Sk does not intersect the set {x ∈ S : dist(x, ∂S) > 2dk}. Hence either
Sk contains this set or it does not intersect it. Since Sk contains U the latter is
impossible for sufficiently large k. This shows that ∪∞

k=1Sk = S.
Step 2. Next we show that (for sufficiently large k) the set S \ Sk is a union of

pairwise disjoint open sets Wj and ∂Wj ∩ S is exactly one of the line segments in
∂Sk ∩ S (see Fig. 2). To see this consider one such segment l. By (34) each point in
l has at most distance dk from ∂S. Hence the endpoints p and q of l lie on the same
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component of ∂S (here and in the following we always assume that k is sufficiently
large). We claim that there exists an open and connected set W whose boundary
consists of l and a curve γ ⊂ ∂S from p to q and which satisfies

dist(x, ∂S) ≤ Cdk, ∀x ∈ W, (35)

l ⊂ int(Sk ∪ W). (36)

To see this note that by definition of a set with Lipschitz boundary a neigh-
bourhood of ∂S can be covered by open balls Bi such that ∂S ∩ Bi is contained in
a Lipschitz graph {(x1, g(x1)} (in a suitable orthonormal coordinate system) with
Lip g ≤ L and that S ∩Bi lies above that graph. If l is sufficiently short then both l

and the boundary arc connecting p and q lie in a single such chart and we can take

W = {x1 ∈ [a, b] : g(x1) < x2 < h(x1)},
where p = (a, g(a)), q = (b, g(b)) and where the affine function h represents the
line segment l.

If l is not contained in a single chart we can subdivide l into a disjoint union of
segments lJ , J = 1, . . . , m which do lie in a single chart. Let pJ and qJ = pJ+1
be the endpoints of lJ and let pJ and qJ be points on ∂S which are closest to them
(these may not be unique but any choice will do), see Figure 2. Let WJ be the closed
deformed rectangle bounded by lJ , the path γJ (in the chart considered) from pJ

to qJ and the line segments [pJ , pJ ] and [qJ , qJ ] (for the first segments l1 and the
last segment lk the rectangle degenerates into a triangle). Now W = int(∪WJ ) has
then desired properties (35) and (36).

Next we claim that

Sk ∩ W = ∅. (37)

l
W

W ′l′

q2

q

p

Sk

W2

q̄2

p̄2

p2

Fig. 2 a Construction of the set W for a long line segment l b Sets W and W ′ for different
boundary segments l and l′.
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Note that Sk ∩∂W = ∅. Since Sk is connected failure of (37) would imply Sk ⊂ W .
But this is impossible since Sk contains U while W satisfies (35). Consider now
the line segments l and l′ in ∂Sk and the corresponding sets W and W ′. We claim
that

W ∩ W ′ = ∅, if l �= l′. (38)

Suppose that l �= l′. Then the segment l (without the endpoints) does not intersect
∂W ′. Thus either l ∩ W ′ = ∅ or l ⊂ W ′. The latter possibility cannot occur since
Sk ∩ W ′ = ∅ by (37). Hence W ′ ∩ ∂W = W ′ ∩ l = ∅. As W ′ is connected this
shows that either W ′ ∩W = ∅ or W ′ ⊂ W . If the former possibility does not occur
then we can exchange the roles of W and W ′ and we get W = W ′. Hence l = l′
and this contradiction proves (38).

Since each of the sets W has positive area it follows from (38) that ∂Sk consists
of at most countably many line segments lj . We finally claim that

S ⊂ Sk ∪
⋃

j

Wj . (39)

Denote the set on the right hand side by S′. Then ∂S′ ∩ S ⊂ (∪j ∂Wj ∪ ∂Sk) ∩ S ⊂
∂Sk . It now follows from (36) that ∂S′ ∩ S = ∅. Hence S ⊂ S′ as claimed.

Step 3. Now we can easily define the approximations Vk . Let f = ∇V . Since f

is constant on the line segment lj there exists a unique affine function Lj : R
2 → R

such that ∇Lj = f and Lj = V on lj . Now set

Vk =
{

V on Sk

Lj on Wj .
(40)

It follows from (36) and (39) that Vk is well-defined and belongs to W 2,2(S). Note
that if two segments l and l′ share a boundary point then the fact that V ∈ W 2,2 and
the Poincaré inequality show that f|l = f|l′ and hence L = L′. Indeed in this case
S contains a sector T = {x : x0 + (r cos ϕ, r sin ϕ) : 0 < r < r0, ϕ0 < ϕ < ϕ1}
which is bounded by (parts of) the segments l and l′ and a circular arc. Let a = f|l
and a′ = f|l′ and assume without loss of generality x0 = 0. Application of the
Poincaré inequality to the arc γr = {(r cos ϕ, r sin ϕ) : ϕ0 < ϕ < ϕ1} yields

|a − a′|2 ≤ Cr

∫

γr

|∇2V |2 dH1.

Dividing by r and integrating from 0 to r0 we deduce that a = a′ since ∇2V ∈ L2.
Similarly we see that L and L′ must agree in the points where the segments l and
l′ touch.

We also see directly from (40) that ∇2Vk = ∇2V in Sk and ∇2Vk = 0 a.e. in
S \Sk (since ∂Sk is a countable union of line segments and thus a two-dimensional
null set). Moreover |∇Vk| ≤ k. This finishes the proof of Theorem 11. �
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a

∂S

x̄

∂S

l

S
r

b x1

�

Fig. 3 Approximation near the boundary. The Poincaré inequality is applied in the shaded
region

Proof of Remark 12. It suffices to consider the case that � is a single interval con-
tained in a single Lipschitz chart of the boundary, i.e. ∂S ∩ BR ⊂ graph g, � =
graph g|[a,b], Lip g ≤ L, see Figure 3. Set

�r = {(x1, x2) : x1 ∈ [a, b], g(x1) < x2 < g(x1) + r}.
We claim that for sufficiently small r > 0 we have

|∇V | < M + 1 in �r. (41)

Once this is shown we conclude easily as follows. The sets Sk are increasing to S

and therefore Sk ∩�r �= ∅ for all sufficiently large k. By (41) we have �r ∩∂Sk = ∅.
Since �r is connected this implies that �r ⊂ Sk and thus Vk = V in �r . Hence we
have Vk = V and ∇Vk = ∇V on � in the sense of trace.

We prove (41) by contradiction. Let x̂ ∈ �r with |∇V (x̂)| ≥ M + 1. We claim
first that

∃x̄ ∈ �r such that ∇V (x̄) = ∇V (x̂) and ∇V is constant on a line segment l

through x̄ which intersects ∂S at both endpoints. (42)

Once we have found such an x̄ it follows from the Poincaré inequality in direction
x2 that the intersection of l with ∂S occurs outside �. Indeed suppose otherwise.
We write x̄ = (ā, z̄) with ā ∈ (a, b). Suppose that the line l through x̄ intersects �

in the point p = (ã, g(ã)). We may assume that p = (0, 0). Let G = |∇V |. Then
G(x1,

z̄
ā
x1) = G(x̄) ≥ M + 1, while G(x1, g(x1)) ≤ M , by assumption. Thus the

Poincaré inequality in x2 direction yields

1 ≤
∣
∣
∣
∣
z̄

ā
x1 − g(x1)

∣
∣
∣
∣

∫
|∇2V |2(x1, x2) dx2 ≤

(∣
∣
∣
∣
z̄

ā

∣
∣
∣
∣ + L

)

x1

∫
|∇2V |2(x1, x2) dx2

and dividing by x1 and integrating over x1 from 0 to ā we reach a contradiction.
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We now proceed to prove the claim. If ∇V is not locally constant near x̂ then
(42) follows directly from Theorem 4 with x̄ = x̂. If ∇V is locally constant near
x̂ consider the open set S1 = {x ∈ S : ∇V is constant near x} and let U denote
the connected component of S1 which contains x̂. If ∂U ∩ �r �= ∅ we can take
x̄ ∈ ∂U ∩ �r and apply again Theorem 4. If ∂U ∩ �r = ∅ then the connectedness
of �r shows that �r ⊂ U . Thus |∇V | = |∇V (x̂)| ≥ M + 1 in �r . This contradicts
the assumption that ∇V satisfies |∇V | ≤ M on � (in the sense of trace). Thus (42)
holds.

Now we obtain (41) easily by an application of Poincaré’s inequality. Indeed if
the line l has slope between −2L and 2L the application of Poincaré’s inequality (in
the x2-direction) in the region between � and l yields, as in the calculation above,

||∇2V ||2
L2 ≥

∫ b−a

0

dx1

r + 3Lx1
= 1

3L
ln

(

1 + 3L(b − a)

r

)

.

Thus we obtain a contradiction if r is chosen sufficiently small. If l has slope larger
than 2L (this can only happen if x̄ is close to the left endpoint (a, g(a)) of �) then
we can apply the Poincaré inequality along a family of lines with slope −2L which
connect � and l (equivalently we could slightly tilt the picture in Figure 3 so that
the slope of l is 2L in the tilted picture and apply again the Poincaré inequality in x2
direction). If the slope of l is less than −2L then we apply the Poincaré inequality
on a family of lines with slope 2L. This finishes the proof of (41) and thus yields
the assertion. �
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