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1. Introduction

Let M and N smooth compact Riemannian manifolds such that N is closed and
isometricly embedded in R

N . Set

W 1,1(M,N) := {u ∈ W 1,1(M,RN);u(x) ∈ N for a.e. x ∈ M}.
This space inherits the strong and the weak topology ofW 1,1(M,RN) and is closed
under the weak convergence of maps inW 1,1. The energy of a map u ∈ W 1,1(M,N)

is defined to be
∫
M

|∇u|.
Based on the work of Schoen and Uhlenbeck [20], Zheng and Bethuel [6] and

Bethuel [2], we know that smooth maps from Bn into N , where Bn is the unit
disk in R

n, are not dense in W 1,1(Bn,N) if π1(N) 	= 0. In fact, they showed that
the lack of approximability is due to local realizations by u ∈ W 1,1(Bn,N) of
nonzero elements of π1(N) around points in Bn. In particular, they proved that if
π1(N) = 0 then any map inW 1,1(Bn,N) can be approximated by smooth maps for
the strong topology. A major question would be to determine a criteria for a map
to be approximable by smooth maps in W 1,1(Bn,N), i.e. we try to define Su, ‘the
topological singular set’ of u, which would be equal to zero if and only if u is a
strong limit of smooth maps in W 1,1(Bn,N).
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In the case π1(N) 	= 0, one can approximate the maps in W 1,1(Bn,N) by maps
which are smooth away from a finite union 
 = ⋃r

i=1
i of smooth (n − 2)-
dimensional submanifolds of Bn. This set of maps is called R∞(Bn,N). A map
v ∈ R∞(Bn,N) realizes elements σx of π1(N, y) on the circles centered at any
point x ∈ 
(v) and contained in the normal bidimensional plane to Tx
(v). If for
some x ∈ 
(v), σx is nontrivial, then v cannot be approximated by smooth maps
in the strong topology (see [2]). In [18], we observed that if π1(N) is Abelian, one
can assign to v a π1(N)-chain which is carried by 
(v) with ‘multiplicity’ σx at
each point x of 
(v). This π1(N)-chain is called the topological singular set Sv of
v in R∞(Bn,N). Moreover, for a sequence of maps vm ∈ R∞(Bn,N) converging
strongly to any u ∈ W 1,1(Bn,N), Svm converges in the flat norm to a unique flat
π1(N)-chain Su we called the topological singular set of u.

This approach confronts important obstacles when π1(N) is not Abelian. The
major problem is the following: If π1(N) is Abelian, its elements are well defined
independent of the choice of the base point in N , i.e. we can define isomorphisms
γ# between π1(N, y) and π1(N, y

′) with the aide of smooth curves γ joining y
and y′ in N . These isomorphisms do not depend of the choice of γ and so we can
identify π1(N, y) and π1(N, y

′) in a natural manner. In this way, e.g. we can com-
pare the topological singularity of u ∈ R∞(B2,RP

2) around different points in the
square B2 without ambiguity, though the values of u in RP

2 near these points might
differ. But, if π1(N) is not Abelian, there is no canonical isomorphism between
π1(N, y) and π1(N, y

′) for two different points y, y′ ∈ N . The isomorphisms γ#

would depend on the homotopy class of γ and even a closed curve γ joining y to
itself may produce a nontrivial isomorphism of π1(N, y) onto itself. So, talking
about the topological type of a singularity without fixing the base points in Bn and
in N is impossible and we can neither compare the topological type of different
singularities nor talk about connecting them by chains with coefficients in π1(N)

as before.
Another problem we encounter in the study of this case is that u ∈ R∞(Bn,N)

may have singularities of the type aba−1b−1 which are not removable by strong
convergence of smooth maps. Meanwhile, following the method used in [18], the
conjugation of u with pa (or pb), the projections ofN on the generating cycles of a
(or b), will not ‘see’ these singularities in the first instance, since pa ◦ u (or pb ◦ u)
would realize the cycles aa−1 (or bb−1) in their respectable circle-type targets.

In this way, the question of defining a topological singular set for maps in
W 1,1(Bn,N) is still open for non-Abelian π1(N). In this paper, we try to pave
the way for understanding the situation by answering another related question. If
π1(N) is Abelian, we can prove that for any map u ∈ W 1,1(Bn,N), there is a
sequence of smooth maps, vm ∈ C∞(Bn,N), such that u is the W 1,1-weak limit
of vm outside arbitrary small positive measure subsets of Bn (see Definition 1.1
below). The method consists in controlling the mass of chains which connect the
singular chain of a map u ∈ R∞(Bn,N) to the boundary of Bn and then removing
the singularities, spending an energy proportional to the mass of these connections
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(see [18]). The question is then whether this method can be modified to prove the
same result for the non-Abelian π1(N) case.

For surmounting the above described problems for non-Abelian π1(N), we
should introduce new elements into the proof. In fact, we search a kind of connect-
ing setAu ⊂ Bn of dimension n−1 for the singularities of a map u ∈ R∞(Bn,N) so
that for any point x ∈ Au we can identify a(x): the elements of π1(N, u(x)) which
should be introduced into u (transversally to Au at x) such that the singularities of
u are removed. These connecting sets should also take into account the problems
provoked by aba−1b−1-type singularities described above. And, last but not least,
the one-energy of inserted curves producing a(x) at x ∈ Au should be controlled
uniformly (independent of the choice of x and u) so that the total energy of the
modification be uniformly proportional to the volume of Au, which in its turn
is controlled by the energy of u. All this is possible for a converging sequence
um → u ∈ W 1,1(Bn,N).

At last, for obtaining the same results for any smooth compact manifold M
as the domain, one should be careful as there may be some global topological
obstructions we did not consider up to now. We refer to the recent work of Hang and
Lin [16, 17] where they show that the absence of ‘local’ topological obstructions
does not mean the approximability by smooth maps in the strong topology. As we
shall see below, the method exposed in this paper allow us to remove these kinds
of singularities too. So here is the main results of this paper:

DEFINITION 1.1. Let � be a domain in R
n and let um be a bounded sequence in

Ł1(�). um is said to converge in the biting sense to u ∈ L1(�) if for every ε > 0
there exists a measurable set E ⊂ � such that µ(E) < ε and um ⇀ u weakly in
L1(�\E).
THEOREM I. LetM and N be smooth Riemannian manifolds for which ∂N = ∅.
Then for every u ∈ W 1,1(M,N) there is a sequence of maps um ∈ C∞(M,N) such
that ∇um tend to ∇u in the biting sense.

Remark 1.1. Hang has recently proved that sequential weak closure of smooth
maps in W 1,1(M,N) coincides with the strong closure of smooth maps [15], thus
when π1(N) 	= 0 the density of smooth maps in the biting sense may be the best
one could hope for W 1,1(M,N).

Assume that ∂M is not empty. We may also ask the same questions about the spaces
of maps with fixed boundary value: For ϕ ∈ C∞(∂M,N), admitting a smooth
extension φ:M → N , we define

C∞
ϕ (M,N) := {

u ∈ C∞(M,N); u = ϕ on ∂M
}

and

W 1,1
ϕ (M,N) := {

u ∈ W 1,1(M,N); u = ϕ a.e. on ∂M
}
.
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Figure 1. An (aba−1b−1)-type singularity dipole.

Figure 2. A bad connecting set for the dipole (not suitable for removing the singularities).

THEOREM Ibis. LetM and N be smooth Riemannian manifolds for which ∂N =
∅. Assume that ϕ ∈ C∞(∂M,N) is smoothly extendable onto M. Then for every
u ∈ W 1,1

ϕ (M,N) there is a sequence of maps um ∈ C∞
ϕ (M,N) such that ∇um tend

to ∇u in the biting sense.

As a simplified example, consider the space W 1,1(Bn,S2), where S2 := S1
a ∨ S1

b

is the bouquet of two circles based on the point w ∈ R
2. π1(S2, w) is the free

(thus non-Abelian) group generated by two generators a and b. Let pa and pb

be the projection of S2 onto S1
a and S1

b . The idea is to associate to any sequence

Figure 3. Inverse images are good connecting sets for the dipole.
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um ∈ R∞(Bn,S2), converging strongly to u ∈ W 1,1(Bn,S2), two points ya ∈ S1
a

and yb ∈ S1
b such that

Aum := Aaum ∪ Abum := (pa ◦ um)−1(ya) ∪ (pb ◦ um)−1(yb)

is a finite union of smooth submanifolds of Bn and that for a uniform constant
C > 0

vol(Aum) ≤ C

∫
Bn

|∇u| + C.

Then the topological considerations detailed in the paper show that Aum satisfy the
above necessary conditions for suitable connecting sets. Observe that as the image
of these ‘connections’ are constant in S2, the homotopy groups π1(S2, um(x)) for
x ∈ Aum would have a fixed base point. For a visualization of this problem compare
Figures 1, 2 and 3.

Finally, we mention that the same questions about the density of smooth maps
and the topological singularities can be asked about the functional spaces
H 1/2(M,N), which is also an interesting case. In the Abelian case, see the cor-
responding studies of Rivière in [19].

2. Preliminaries

2.1. THE NON-ABELIAN FUNDAMENTAL GROUP

Let N be a closed smooth manifold and y, y′ ∈ N two base points. Any curve

γ : [0, 1] → N

for which γ (0) = y and γ (1) = y′, induces a natural isomorphism

γ#: π1(N, y
′) → π1(N, y),

which depends only on the homotopy class of γ . If π1(N, y) is Abelian, these
isomorphisms are canonical, that is they do not depend on the choice of the curve
γ . In this case we can talk about π1(N)without ambiguity. Otherwise, for referring
to a specific element of π1(N), we are obliged to fix a base point for π1(N). Now
let us assume that y = y′ and consider a curve γ as above. We have

γ#(a) = [γ ]a[γ ]−1, ∀a ∈ π1(N, y), (2.1)

where [γ ] is the homotopy class of γ in π1(N, y). Naturally if π1(N, y) is not
Abelian, these isomorphisms may not be trivial for [γ ] 	= 0. See [7, section VII.7]
for more details.
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2.2. THE SUBSPACE r∞(m, n)

DEFINITION 2.1. We say that u ∈ W 1,1(M,N) is in R∞(M,N) if u is smooth
except on B = ⋃m

i=1 σi ∪ B0 , a compact subset of M, where Hn−2(B0) = 0 and
the σi , i = 1, . . . , m are smooth embeddings of the unit disk of dimension n − 2.
Moreover we assume that any two different faces of B, σi and σj , may meet only
on their boundaries.

THEOREM II (Bethuel [2]). R∞(M,N) is dense in W 1,1(M,N) for the strong
topology.

DEFINITION 2.2. Let u ∈ R∞(M, S1) and let B = ⋃
σi ∪B0 be the singular set

of u. Suppose that each σi is oriented by a smooth (n−2)-vectorfield σi . For a ∈ σi
let Na be any two-dimensional smooth submanifold of M, orthogonal to σi at a.
Consider the embedded disk Ma,δ = Bδ(a) ∩ Na oriented by the 2-vectorfield Ma

such that (−1)n−1σi(a) ∧ Ma is the fixed orientation of M. Then the topological
degree of u on the closed curve 
a,δ = ∂Ma,δ is well defined and is independent
of the choice of a and Na for δ small enough. We call this integer the degree of u
on σi and denote it by degσiu.

THEOREM III (Almgren et al. [1]). LetM be as above, u ∈ R∞(M, S1), then for
any regular value y ∈ S1,

∂[[u−1(y)]] − [[u−1(y)]]�∂M =
m∑
i=1

(degσi u) [[σi]]

and ∫
S1

Hn−1(u−1(y)) dy ≤
∫
M

|∇u| d volM.

3. Proof of Theorem I

As in the case where π1(N) is Abelian, we should prove the existence of sets
with bounded volume, connecting the singularities of a map in R∞(M,N), along
which we can modify the map for removing its singularities. Meanwhile, for some
technical reasons, we should use the same process for the elements of any strongly
convergent sequence um ∈ R∞(M,N) when defining these sets.

Let us consider any map u ∈ W 1,1(M,N) and a sequence of maps um ∈
R∞(M,N) converging strongly to u. As we mentioned above, such a sequence
always exist. We should show the existence of smooth maps vm: M → N , such
that ∇vm tend in the biting sense to ∇u.
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Step 1: Projection of maps into some one skeleton of N
Consider some triangulation of N and for 1 ≤ ł ≤ k, let Nl be the l-skeleton of N .
So N = Nk . Observe that by [21, theorem (1.6), p. 215], the homomorphism

χ : π1(N
1, y) → π1(N, y), (3.1)

induced by the injection map i: N1 → N , is onto. Also using [12, corollary 3.5,
p. 38],N1 is of the homotopy type of a bouquet of circles and we obtain that π1(N

1)

is finitely generated. Let f : N1 → Sβ := ∨β

i=1 S
1
i be a homotopy equivalence

between N1 and the bouquet of β circles, S1
1 , . . . , S

1
β , embedded in some Euclidean

space and based on the fixed point w.
Let Bl be the unit disk in R

l. We denote

Ul := {
(x, y) ∈ Bl × Bl ; x 	= y

}
.

DEFINITION 3.1. For (x, y) ∈ Ul, we define p(x, y) to be the unique point on
∂Bl which is on the ray from x to y.

Let us write

Nl =
sl⋃
i=1

ξ li (B
l),

where

ξ li : Bl → Nl
i := ξ li (B

l), i = 1, . . . , sl

are diffeomorphisms and each two Nl
i are rather disjoint or intersecting on a lower

dimensional face in Nl−1. Let w ∈ Nl
1 × · · · ×Nl

sl
, w = (w1, . . . , wsl ) be such that

wi /∈ Nl−1. Define

plw: Nl\{w1, . . . , wsl } → Nl−1

as follows:

plw(y) :=
{
ξ li (p((ξ

l
i )

−1(wi), (ξ
l
i )

−1(y))), if y ∈ Nl
i \Nl−1,

y, otherwise,

where p is the projection defined in Definition 3.1. We have this useful result,
already proved in [18]: For any map u ∈ W 1,1(M,Nl)∫

Nl1,ε×···×Nlsl ,ε

∫
M

|∇(plw ◦ u)| d volM dw ≤ C(l, ε)

∫
M

|∇u|,

where for 1 ≤ i ≤ sl and 0 < ε < 1

Nl
i,ε := ξ li (B

l(0, 1 − ε))
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and C(l, ε) is independent of u. As a consequence, by the Egorov inequality, there
is a set Wl

u ⊂ Nl
ε := Nl

1,ε × · · · × Nl
sl,ε

⊂ R
lsl for which



∫
M

|∇(plw ◦ u)| ≤ 2C(l, ε)

H lsl (Nl
ε)

∫
M

|∇u|, ∀w ∈ Wl
u,

H lsl (W l
u) ≥ 1

2H lsl (Nl
ε).

Meanwhile, observe that for fixed w ∈ Wl
u, the isomorphisms

κy := γ#: π1(N, p
l
w(y)) → π1(N, y), (3.2)

where γ : [0, 1] → N , γ (0) = y, γ (1) = plw(y) is any smooth curve, are indepen-
dent of the choice of γ if its trajectory lies entirely in (plw)

−1(plw(y)). This is be-
cause any connected component of (plw)

−1(plw(y)) is simply-connected. Moreover,
for any curve α: [0, 1] → N , α(0) = α(1) = y, we have

κy ◦ χ ([plw ◦ α]) = [α], (3.3)

where χ is as in (3.1).

PROPOSITION 3.1. Let u and um ∈ R∞(M,N) be as above. Then, passing to a
subsequence if necessary, there are wl ∈ Nl

ε, 1 < l ≤ k, such that

(i) ul−1
m := plwl ◦ ulm ∈ R∞(M,Nl−1).

(ii)
∫
M

|∇ul−1
m | dvolM ≤ K(l, ε)

∫
M

|∇ulm| dvolM .

(iii) We have κum(x) ◦χ ([u1
m ◦α]) = [um ◦α], where α: [0, 1] → M, α(0) = α(1),

is any smooth curve avoiding the singularities of u1
m.

Regarding the above statements, the proof of this proposition is straightforward.

Step 2: Defining the inverse images which connect the singularities of um
Fix suitable ε > 0 and consider the sequence u1

m according to Proposition 3.1.
Observe that u1

m = P ◦ um where

P := p2
w2

◦ · · · ◦ pkwk .
Set

ũm := f ◦ u1
m:M → Sβ.

f can be assumed to be smooth, so ũm ∈ R∞(M,Sβ). Also, again by proposition
3.1, for some constant C > 0 independent of m∫

M

|∇um| d volM ≤ C

∫
M

|∇um| d volM.

We have then the following proposition:
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PROPOSITION 3.2. For i = 1, . . . , β, there is yi ∈ S1
i , yi 	= w, a regular value

of f ◦ P , such that yi is a regular value for any ũm and

Hn−1(ũ−1
m (yi)) ≤ C ′

∫
M

|∇um| d volM,

for C ′ > 0 independent of m.

Observe that we can project smoothly Sβ on each of the circles S1
1 , . . . , S

1
β . The

proof is straightforward, using Sard’s theorem, the Egorov inequality and Theo-
rem III.

Now observe that we can write

ũ−1
m (yi) =

µi⋃
j=1

Ai,jm ⊂ M

and

(f ◦ P )−1(yi) =
νi⋃
k=1

Bi,k ⊂ N,

where Ai,jm and Bi,k , respectively, the connected components of ũ−1
m (yi) and (P ◦

f )−1(yi), are smooth submanifolds of M and N . Moreover, it is obvious that
um(A

i,j
m ) ⊂ Bi,k for some 1 ≤ k ≤ νi .

Using the isomorphisms κy defined above, we want to associate a unique, well-
defined element of π1(N, y), ai,ky , to any y ∈ Bi,k . Since f is a homotopy equiv-
alence, the f −1(yi) are simply-connected. As a result, since P (Bi,k) ⊂ f −1(yi),
the Bi,k are simply-connected too (see (3.3)). Let ai ∈ π1(Sβ, yi) be the homo-
topy class representing the curves which make only one turn over S1

i in one fixed
direction. Let y′ ∈ f −1(yi). Since f is a homotopy equivalence,

aiy ′ := (f#)
−1(a) ∈ π1(N

1, y′)

is well defined. We set for y ∈ Bi,k

ai,ky := ky ◦ χ(aiP (y)) ∈ π1(N, y)

which is well defined by (3.2). Observe that by [7, section VII, theorem 7.2], for
any γ : [0, 1] → Bi,k we have

γ#(a
i,k
γ (1)) = a

i,k
γ (0). (3.4)

Step 3: Modifying a map along the connecting sets
We should prove that any map um ∈ R∞(M,N) can be approximated weakly
by smooth maps with equibounded energy. Observe that to approximate a map in
W 1,1(M,N) by smooth maps we should take care of local and global obstructions
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as described in [16]. So what we will do is to approximate um by equibounded
maps which satisfy the one-skeleton condition. This condition, introduced in [17],
is the necessary and sufficient condition for that a map in R∞(M,N) be strongly
approximable by smooth maps. In fact, if for u ∈ R∞(M,N), u|M1 is extendable
to a smooth map ũ: M → N for every ‘generic’ 1-skeleton M1 of M, then u can
be approximated by smooth maps in W 1,1(M,N) (see [17, theorem 6.2]).

DEFINITION 3.2. u ∈ R∞(M,N) satisfies the 1-skeleton condition if and only
if u|M1 is extendable to a smooth map ũ: M → N for every ‘generic’ 1-skeleton
M1 of M.

PROPOSITION 3.3. Let um and Ai,jm as above. Then there are maps vm,m′ such
that the vm,m′ satisfy the 1-skeleton condition and that




vm,m′
L1−→ um as m′ → ∞,

∫
M

|∇vm,m′ | ≤
∫
M

|∇um| + C

β∑
i=1

µi∑
j=1

Hn−1(Ai,jm )+O

(
1

m′

)

for C > 0 independent of m.

For technical reasons we introduce a new version of lemma 5.1 in [18]:

LEMMA 3.1. For every 1 ≤ i ≤ β, and every 1 ≤ k ≤ νi , there exists an open
covering of Bi,k , {Ui,k

1 , . . . , U i,k
ri,k

}, and smooth maps

ωi,kr : [0, 1] × Ui,k
r → Bi,k, r = 1, . . . , ri,k

such that


ωi,kr (0, y) = ωi,kr (1, y) = y, ∀y ∈ Bi,k,

[ωi,kr (., y)]πp(N,y) = ai,ky , ∀y ∈ Bi,k,
∫ 1

0
|∇xωi,kr (., y)| dx ≤ C, ∀y ∈ Bi,k,

|∇ωi,kr |∞ ≤ C,

where C > 0 is independent of i and k.

Using the compatibility condition (3.4) the proof of this lemma is straightforward.
The maps ωi,kr are then used to introduce the ai,ky ∈ π1(N, y) in one-dimensional

topological disks transversal to the inverse images Ai,jm and to modify the um. As
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in [18, lemma 7.1], the modified maps will satisfy the 1-skeleton condition with
respect to M and N . This, alongside the energy bounds on ωi,kr , completes the
proof of the proposition.

Step 4: End of proof for Theorem I
If a map satisfies the 1-skeleton condition with respect to M and N , it can be
approximated strongly in W 1,1(M,N) by smooth maps. So we can consider the
vm,m′ to be smooth in Proposition 3.3. Remember that ũ−1

m (yi) is the distinct union
of the Ai,jm . So, by Propositions 3.2 and 3.3, vm,m tend in L1 to u and their gradients
are equibounded in L1 norm. By [11, vol. I, section 1.2.7]), ∇vm,m converge in
L1 in the biting sense. Furthermore the limit cannot be other than ∇u, since vm,m
converge strongly to u in L1.
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