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Abstract

We prove that given a simply connected compact manifold M and a
closed manifold N , any map in the Sobolev space W 1,2(M, N) can be
approximated weakly by smooth maps between M and N .

1 Introduction

In the last decades many questions regarding the density of smooth maps
in a given function space between manifolds have arisen in calculus of vari-
ations. Nowadays this kind of question is becoming a field on its own with
widely open problems.

The most studied function spaces are the Sobolev spaces W 1,p(M,N)
where M is a compact n-dimensional manifold and N a closed Riemannian
manifold isometrically embedded in some R

N :

W 1,p(M,N) :=
{
u ∈ W 1,p(M, RN ) ; u(x) ∈ N a.e. x ∈ M

}
.

W 1,p(M, RN ) is defined on the base of the Sobolev space W 1,p(Rn, RN )
using the smooth charts of M in the natural way. For any ϕ ∈ C∞(∂M,N),
admitting a smooth extension φ : M → N , we define

C∞
ϕ (M,N) :=

{
u ∈ C∞(M,N) ; u = ϕ on ∂M

}

and
W 1,p

ϕ (M,N) :=
{
u ∈ W 1,p(M,N) ; u = ϕ on ∂M

}
.

1.1 Local aspects of the sequentially weak density of smooth
maps and the topological singular set. In [SU], [BZ], and [B1], re-
spectively R. Schoen, K. Uhlenbeck, X. Zheng and F. Bethuel shed light
on whether or not C∞(Bn, N) is dense in W 1,p(Bn, N), where Bn is the
n-dimensional unit disk. They showed that the lack of approximability is
due to the existence of a “topological singular set” for u. The singular set
is characterized by local realizations of non-zero elements of π[p](N) around
points in Bn by u, where [p] is the integer part of p. (The notion of topo-
logical singular set is still vague and remains to be defined precisely). In
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particular they proved that if π[p](N) = 0 then any map in W 1,p(Bn, N)
can be approximated by smooth maps for the strong topology.

In the case π[p](N) �= 0, the best that one can do is to approximate maps
in W 1,p(Bn, N) by maps which are smooth away from a finite union Σ =⋃r

i=1 Σi of smooth (n− p− 1)-dimensional submanifolds of Bn. This set of
maps is called R∞,p(Bn, N). A map v ∈ R∞,p(Bn, N) realizes elements σx

of π[p](N) on the [p]-spheres centered at any point x ∈ Σ(v) and contained
in the normal [p]+1 plane to TxΣ(v). If for some x ∈ Σ(v), σx is non-trivial,
then v cannot be approximated by smooth maps in the strong topology (see
[B1]). Furthermore one can assign to v a π[p](N)-chain which is carried by
Σ(v) with “multiplicity” σx at each point x of Σ(v). This π[p](N)-chain
can be called the topological singular set Sv of v in R∞,p(Bn, N). One
of the major questions would be to understand the behavior of Svm for a
sequence of maps vm ∈ R∞,p(Bn, N) converging to any u ∈ W 1,p(Bn, N)
and eventually to prove a “flat-norm” convergence of Svm to a unique flat
π[p](N)-chain Su which therefore we could call the topological singular set
of u.

Related to this question is the problem of the weak density of smooth
maps in W 1,p(Bn, N). Although the density of smooth maps for the weak
topology can be easily handled (see [B1]: Smooth maps are dense for
the weak topology if and only if p ∈ N), the question of the density of
smooth maps in W 1,p(Bn, N) for the sequentially weak topology, where
p ∈ N, is more involved: For p ∈ N, πp(N) �= 0, does there exist for any
u ∈ W 1,p(Bn, N) a sequence um ∈ C∞(Bn, N) such that um ⇀ u in W 1,p?

The case N=S2, p=2 was treated by F. Bethuel, H. Brezis, J.M. Coron
and E. Lieb in [BrCL] and [B2]. Bethuel mentioned that the answer is yes
for N = Sp, p ≥ 2 [B1]. In [H], P. Hajlasz has proved that the answer
is yes when N is (p − 1)-connected. For other positive answers to the
sequentially weak density of smooth maps in other situations see [P3] and
[R]. Counterexamples to the above question are not known.

As we will explain below the control of the mass of the minimal chain
connecting Svm for vm ∈ R∞,p(Bn, N) converging strongly to u enables us
to give a positive answer to the sequentially weak density of smooth maps
in the case where M = Bn.

1.2 The global problem. Recent developments by F. Hang and
F.H. Lin [HaL1] showed that one should be careful while considering a
generic smooth compact manifold M as the domain. In particular there
are cases where the condition “Su = 0” is not sufficient to guarantee the
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approximability of u by smooth maps in the strong topology of W 1,p(M,N),
even when N = Sp. As an example, consider the map u : CP

2 → S2 defined
by

u
(
[x, y, z]

)
:= [x, y] ,

where [x, y, z] (respectively [x, y]) are the homogeneous coordinates on CP
2

(respectively on CP
1 = S2). The map u ∈ W 1,2(CP

2, S2) has only a point
singularity on a = [0, 0, 1], hence Su = 0. However, u is not in the strong
closure of smooth maps (see [HaL1]). Moreover, this global singularity
cannot be “located” in the domain, in the sense that we may approximate
strongly u by maps which are smooth on a fixed neighborhood of the point
a and which are singular in another point.

We are able to handle both local obstructions Su and global ones to the
strong approximation in order to establish smooth weak approximability
whenever p = 2 and M is simply connected. Precisely, our main result is

Theorem I. Let M and N be compact smooth manifolds and assume that
M is simply connected. Then smooth maps are dense in W 1,2(M,N) for
the sequential weak topology. Moreover, assuming that ϕ ∈ C∞(∂M,N) is
smoothly extendable to M , for every u ∈ W 1,2

ϕ (M,N), there is a sequence
of smooth maps um ∈ C∞

ϕ (M,N) converging weakly to u in W 1,2. �

We will show in the last section of this paper how we can manage to
remove the global singularities for getting these weak sequential density
results even if the domain is not a disk. We will use recent results of
F. Hang and F.H. Lin, appeared in [HaL2], which give the necessary and
sufficient condition for a map in W 1,p(M,N) to be strongly-approximable
by smooth maps in this space. The idea would be to modify the maps, not
along the minimal connections, but along inverse images. We will show how
this operation produces a new map which satisfies the Hang–Lin condition.

1.3 More results on the topological singular sets Su and sequen-
tially weak density. In this paper, we prove the convergence of the
π[p](N)-chains Svm for any convergent sequence of maps in W 1,p(Bn, N)
when [p] = n − 1 if N is ([p] − 1)-connected, i.e.

π1(N) = · · · = π[p]−1(N) = 0

or when [p] = 1 if π1(N) is abelian. The problem is still open for almost
every other value for [p]. In fact, if we set for S, any integral flat chain in
Bn of dimension k,

mi(S) := inf
{
M(T) ; T ∈ Rk+1(Bn), ∂T = Su

}
,
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the question would be to determine whether mi(Sum − Suk
) → 0 when

um converges strongly to u in W 1,p(Bn, Sp). The answer is yes for p = 1
or n − 1 (see [BBC] and [GMS, vol. II, sect. 5.4.2]), while we do not know
whether this is the case even for maps in H1(B4, S2).

Theorem II. Let Bn be the unit disk in R
n. Assume that [p] = 1 and

π1(N) is abelian or [p] = n − 1 and N is a closed ([p] − 1)-connected
Riemannian manifold of dimension equal or greater than [p]. Then Su, the
topological singular set of any u ∈ W 1,p(Bn, N), is well defined as a flat
π[p](N)-chain and the flat norm of Sum − Su converges to 0 if um → u in

W 1,p(Bn, N). Moreover u ∈ W 1,p(Bn, N) (respectively u ∈ W 1,p
ϕ (Bn, N))

is a strong limit of maps in C∞(Bn, N) (respectively C∞
ϕ (Bn, N)) if and

only if Su = 0. �

Remark 1.1. The approach used in ([GMS, vol. II, sect. 5.4.2]) for defining
a topological singularity for Sobolev maps considers only the real homologic
singularities. This is not suitable when the homotopy type singularities are
not seen by the real homology, as in the case W 1,1(Bn, RP

2) discussed
below.

Remark 1.2. We can extend these results to [p] = 3 or 7 [P2].

However, our method allows us to prove the following theorem. This
result is not mentioned by Hajlasz [H] and cannot be deduced directly from
his proof.

Theorem III. Let N be a closed smooth manifold. Assume that for
some integer 2 ≤ p ≤ k, N is (p − 1)-connected. Also assume that ϕ :
∂Bn → N is a smooth map, smoothly extendable to Bn. Then for every
u ∈ W 1,p

ϕ (Bn, N) there is a sequence of maps um ∈ C∞
ϕ (Bn, N) such that

um converge weakly to u in W 1,p
ϕ (Bn, N). �

If p = 1, smooth maps are not sequentially dense in W 1,1(Bn, N) for
most cases [Ha]. Meanwhile, assuming that π1(N) is abelian, by controlling
the mass of connections for a convergent sequence in W 1,1(Bn, N), a weaker
type of density is obtained. The non-abelian case is more involved and is
treated in another paper [P3].

Definition 1.1. Let Ω be a domain in R
n and let um be a bounded

sequence in �L1(Ω). um is said to converge in the biting sense to u ∈ L1(Ω)
if for every ε > 0 there exists a measurable set E ⊂ Ω such that µ(E) < ε
and um ⇀ u weakly in L1(Ω\E).
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Theorem IV. Let Bn be the unit disk in R
n and N be any k-dimensional

closed manifold. Assume that ϕ ∈ C∞(∂Bn, N) is smoothly extendable
to Bn. If π1(N) is abelian, for every u ∈ W 1,1

ϕ (Bn, N) there is a sequence
of maps um ∈ C∞

ϕ (Bn, N) such that ∇um tend to ∇u in the biting sense.�

2 Preliminaries

2.1 Flat chains over a coefficient group. Let G be an abelian group.
| . | : G → R

+ is called a norm on G if

(i) ∀g ∈ G , | − g| = |g| ,
(ii) ∀g, h ∈ G , |g + h| ≤ |g| + |h| ,

(iii) |g| = 0 if and only if g = 0 .

We assume that G is a complete metric space with respect to the metric
d(g, h) := |g − h|.

Let K be any compact convex subset of R
n. We introduce the spaces of

polyhedral k-chains, flat k-chains and finite mass flat k-chains in K, with
coefficients in G. The readers can refer to [Fl] and [W] for more details.

Definition 2.1. Pk(K,G) is the space of all G-linear sums of oriented
k-dimensional polyhedra in K. For P =

∑m
i=1 gi[[σi]] ∈ Pk(K,G), where

gi ∈ G and σi, i = 1, . . . ,m, are non-overlapping k-dimensional polyhedra,
we define the mass and the boundary of P respectively to be

M(P ) :=
m∑

i=1

|gi| vol(σi) ,

∂P :=
m∑

i=1

gi ∂[[σi]] ∈ Pk−1(K,G) .

Definition 2.2. Let P ∈ Pk be a polyhedral G-chain. The flat norm of
P is

F(P ) := inf
{
M(P − ∂B) + M(B) ; B ∈ Pk+1

}
.

Definition 2.3. The space of flat k-chains, Fk(K,G), is the F-completion
of Pk(K,G). For A ∈ Fk(K,G), we define the mass of A to be

M(A) := inf
{

lim inf
n→∞ M(Pn) ; Pn

F−→ A, Pn ∈ Pk(K,G)
}

.

Mk(K,G) is the set of flat k-chains in Fk(K,G) with finite mass and is a
complete metric space with respect to the flat norm. Finally, for Ω being
any open set in R

n, we define Fk(Ω, G) to be the union of all the Fk(K,G)
among convex compact sets K ⊂ Ω.
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We recall some useful results:

Lemma 2.1. The boundary map ∂ : Pk → Pk−1 is continuous with respect
to the F-norm and so it can be extended to a unique F-continuous map
∂ : Fk → Fk−1. �

Lemma 2.2. Any homomorphism χ : G → H between groups, which
is continuous with respect to their norms, induces a F-continuous group
homomorphism

χ∗ : Fk(K,G) → Fk(K,H) .

Moreover, χ∗ commutes with ∂, i.e.

χ∗(∂A) = ∂χ∗(A) , ∀A ∈ Fk(K,G) (2.1)

and
M(χ∗(A)) ≤ CM(A), ∀A ∈ Mk(K,G)

if |χ(g)| ≤ C|g| for all g ∈ G. �

2.2 The subspaces R���(C�, N) and R���(C�, N).

Definition 2.4. Let Cn := [−1/2, 1/2]n be the unit cube in R
n.

u ∈ W 1,p(Cn, N) is in R∞,p(Cn, N) if u is smooth except on Σ(u) =
∑r

i=1 Σi,
where for i = 1, . . . , r, Σi is a subset of a linear subspace of R

n of dimension
n − p − 1 and ∂Σi is a subset of a linear subspace of dimension n − p − 2.

Theorem (Bethuel, [B1]). R∞,p(Cn, N) (respectively R∞,p
ϕ (Cn, N)) is

dense in W 1,p(Cn, N) (respectively W 1,p
ϕ (Cn, N)) for the strong topology. �

Let u ∈ R∞,p(Cn, N). There is some compact subset of Cn, B =
⋃µ

i=1 σi,
where the σi, i = 1, . . . , µ are non-overlapping (n − p − 1)-dimensional
polyhedra, such that Σ(u) ⊂ B and that every n − p − 2 dimensional face
of B belongs to at least two σi. Moreover we can assume that any two
different faces of B intersect only on their boundaries. Let

‖x‖ := max
i=1,...,n

|xi| for x = (x1, . . . , xn) ∈ R
n

and for δ > 0 put
V δ :=

{
y ∈ Cn ; ‖y − B‖ ≤ δ

}

where
‖y − B‖ := inf

{‖y − x‖ ; x ∈ B
}

.

Also for δ > 0 and some orthonormal base {ei
1, . . . , e

i
p+1} orthogonal to σi,

set

σδ
i :=

{
x +

p+1∑

j=1

tje
i
j ; x ∈ σi , max

j=1,...,p+1
|tj| ≤ δ

}
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and define πi : σδ
i → σi to be the smooth projection

πi

(
x +

p+1∑

j=1

tje
i
j

)
:= x .

For δ0 small enough, we consider a lipschitz projection π : V δ0 → B
with the following properties:

(i) V δ =
⋃µ

i=1 V δ
i , where the V δ

i := π−1(σi) ∩ V δ are non-overlapping
n-polyhedra in R

n which intersect only on lower dimensional faces.
(ii) There are lipschitz diffeomorphisms

fi : V δ0
i → σδ0

i ,

such that 




fi(V δ
i ) = σδ

i ∀δ < δ0

π|V δ
i

= πi ◦ fi|V δ
i

fi

(
[x, π(x)]

)
=

[
fi(x), π(x)

] ∀x ∈ V δ
i

where by [p, q] we mean the segment joining the two points in Cn.
Definition 2.5. For y ∈ V δ\B, let hδ(y) be the unique point on ∂V δ

which is on the ray from π(y) to y. Then naturally π(hδ(y)) = π(y) and hδ

is locally lipschitz on V δ\B. We set

uδ(y) :=

{
u(hδ(y)) if y ∈ V δ ,

u(y) otherwise .
(2.2)

Definition 2.6. We set

R∞,p(Cn, N) :=
{
uδ ; u ∈ R∞,p(Cn, N)

}

and we say u is radial if u ∈ R∞,p(Cn, N).
By computing the integral of uδ on V δ

i by the mean of fi as new
coordinates we observe that for δ1 > 0 sufficiently small, there is some
constant K, depending only on B, for which{∫

∂V δ |∇u|p ≤ K
δ1

∫
V δ1

|∇u|p
∫
V δ |∇uδ|p ≤ δK

∫
∂V δ |∇u|p (2.3)

for δ ∈ I0, a positive measure subset of [0, δ1].
Remark 2.1. As a result, R∞,p(Cn, N) is also dense in W 1,p(Cn, N) for
the strong topology.

We recall that there are canonical isomorphisms between πp(N,x) and
πp(N, y) for x, y ∈ N if and only if π1(N) is abelian for p = 1 and π1(N) = 0
for p > 1. We assume that these conditions are satisfied so that we can talk
about the homotopy classes of maps from Sp into N as elements of πp(N).
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Definition 2.7. Let u ∈ R∞,p(Cn, N) and Σ(u) ⊂ B =
⋃µ

i=1 σi be
its singular set. Assume that each σi is oriented by a smooth (n − p − 1)-
vectorfield 
σi. For a ∈ σi, let Na be the (p+1)-dimensional plane orthogonal
to σ at a. Consider the (p + 1)-disk Ma,δ = Bδ(a) ∩ Na oriented by the

(p + 1)-vector 
Ma such that 
σi(a) ∧ 
Ma = ξ�n . u is continuous on the
p-dimensional oriented sphere Σa,δ = ∂Ma,δ. The homotopic singularity of
u at σi is

[u, σi] := [u|Σa,δ
]πp(N) , (2.4)

i.e. the homotopy class of u|Σa,δ
in πp(N), which is independent of the

choices of a and δ.

Definition 2.8. We define the topological singularity of u ∈ R∞,p(Cn, N)
to be the πp(N)-polyhedral chain

Su :=
µ∑

i=1

[u, σi] [[σi]] ∈ Pn−p−1

(Cn, πp(N)
)
,

where Σ(u) ⊂ B =
⋃µ

i=1 σi is its singular set.

Remark 2.2. u suffices to be continuous on Cn\B for Su to be well defined.

2.3 A useful lemma. Let Bl be the unit disk in R
l. We denote

U l :=
{
(x, y) ∈ Bl × Bl ; x �= y

}

and
U l

δ :=
{
(x, y) ∈ U l ; y /∈ B(x, δ)

}
.

Definition 2.9. For (x, y) ∈ U l, we define p(x, y) to be the unique point
on ∂Bl which is on the ray from x to y.

Clearly p is well-defined and smooth on U l. As U l
δ is compact, we have

for some constant C(l, δ) > 0:
sup

(x,y)∈U l
δ

∣
∣∇p(x, y)

∣
∣ ≤ C(l, δ) < +∞ .

We have
Lemma 2.3. Let 1 ≤ p < l be an integer. Then∫

B(0,1−δ)

∣
∣∇yp(x, y)

∣
∣pdx ≤ C(l, p, δ) (2.5)

when C(l, p, δ) depends on l, p and δ and not on y. �

Proof. Let x ∈ B(0, 1 − δ). We distinguish two cases:
(i) y /∈ B(x, δ). Then (x, y) ∈ U l

δ and we get
∣
∣∇yp(x, y)

∣
∣ ≤ C(l, δ) ≤ 2C(l, δ)

|y − x| . (2.6)
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(ii) Otherwise y ∈ B(x, δ) ⊂ Bl. Then

p(x, y) = p

(
y − x

|y − x|δ + x, x

)

and so

|∇yp(x, y)| ≤
∣∣
∣∣∇yp

(
y − x

|y − x|δ + x, x

)∣∣
∣∣

δl

|y − x| ≤
δlC(l, δ)
|y − x| , (2.7)

as (
y − x

|y − x|δ + x, x

)
∈ U l

δ .

Using the inequalities (2.6) and (2.7), the lemma is proved. �

3 An Example: W 1�1
�

(C2, RP2)

3.1 Notation. Let f : S2 → R
6 be the map

f(x, y, z) :=
(√

2
2 x2,

√
2

2 y2,
√

2
2 z2, xy, yz, zx

)
. (3.1)

f induces an embedding of the 2-dimensional Real Projective Space, RP
2,

into R
6. A property of this embedding is that the minimum length of the

cycle homotopic to the non-zero element of π1(RP
2) � Z2 is π, independent

of the choice of the base point. We define a norm on the 2-group π1(RP
2):

|a| := 1 if a �= 0 , := 0 otherwise . (3.2)
Also we define the map g : B2 → RP

2 as follows:

g(x1, x2) := f
(
x1, x2,

√
1 − (x2

1 + x2
2)

)
. (3.3)

Now let w0 = f(1, 0, 0) ∈ RP
2 and put

G = f
({(x, y, z) ∈ S2 ; z = 0}) .

G is a length minimizing generator of π1(RP
2) passing through w0. For

w ∈ RP
2\G we define the projection

pw : RP
2\{w} → G

as follows:
pw(w′) := g

(
p(g−1(w), g−1(w′))

) ∀w′ ∈ RP
2\{w} (3.4)

where p is the map given in Definition 2.9. Observe that pw is well defined
for w′ ∈ G as in this case we would have pw(w′) = w′ independent of the
choice of g−1(w′). Let us fix ε > 0 such that

Vol(RP
2\Gε) > 2π ,

where
Gε :=

{
y ∈ RP

2 ; d(y,G) < ε
}

is the ε-neighborhood of G in RP
2.
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Lemma 3.1. Let G and pw be as above. Then

(i) pw : RP
2\{w} → G is well defined and smooth.

(ii) For any cycle G′ ⊂ RP
2\{w} we have

[G′]π1(��2) = χ
(
[pw(G′)]π1(G)

)
(3.5)

where χ : π1(G) � Z → π1(RP
2) � Z2 is an onto homomorphism.

(iii) For any w′ ∈ RP
2 we have

∫

��2\Gε

∣∣∇pw(w′)
∣∣dw = C0 = C0(ε) < +∞ . (3.6)

�

Proof. We observe that g−1 is well defined and smooth on RP
2\G, while in a

neighborhood of G, pw is a projection along smooth curves orthogonal to G.
This proves the first part of the lemma. Now observe that the injection map
i : G → RP

2 induces a homomorphism,

χ : π1(G) → π1(RP
2) ,

which is onto as [G] is the generator of π1(RP
2). So, since pw is smooth on

RP
2\{w}, we get

[G′]π1(��2) = [pw(G′)]π1(��2) = χ
(
[pw(G′)]π1(G)

)

which proves (3.5).
Now let

Nε := RP
2\Gε

and observe that for g : B2 → RP
2 as in (3.3)

(i) Nε/2 = g(B(0, 1 − δ)), for some 0 < δ < 1,
(ii) g|B(0,1−δ) is an embedding.

We prove (3.6). Let w ∈ Nε ⊂ Nε/2. If w′ /∈ Gε/2 then since g−1 is
smooth on Nε/2, using (2.5) and (3.4), we get, for some C0(δ) > 0,

∫

Nε

∣
∣∇pw(w′)

∣
∣dw ≤

∫

Nε/2

∣
∣∇pw(w′)

∣
∣dw ≤ C0(δ) .

If not, the map p̃ : Nε × Gε/2 → G
p̃(w,w′) := pw(w′)

is smooth on its compact domain because Nε ∩ Gε/2 = ∅. So there exists
K > 0, independent of w,w′ for which

∣
∣∇pw(w′)

∣
∣ ≤ K

if w′ ∈ Gε/2, w ∈ Nε. This completes the proof of (3.6). �
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3.2 Study of R��1
�

(C2, RP
2). Let u ∈ R∞,1

ϕ (C2, RP
2). We observe

that Su ∈ P0(C2, π1(RP
2)) is is in fact the sum

∑µ
i=1[u, pi][[pi]] where

{p1, . . . , pµ} are the singularities of u and [u, pi] is the class of u(∂B(pi, δ))
in π1(RP

2) for δ small enough.

Definition 3.1. I ∈ F1(C2, π1(RP
2)) is a connection for u if ∂I = Su.

Proposition 3.1. For u ∈ R∞,1
ϕ (C2, RP

2), there exists I ∈ P1(C2, π1(RP
2))

such that {
∂I = Su

M(I) ≤ C
∫ |∇u| + C

(3.7)

for some constant C > 0 depending only on ϕ. �

Remark 3.1. Any I ∈ P1(C2, π1(RP
2)) is a set of non-oriented segments

while M(I) is simply the total length of these segments.

Corollary 3.1. For any u ∈ R∞,1
ϕ (C2, RP

2), there exists a connection
Iu ∈ F1(C2, π1(RP

2)) of minimal mass which satisfies

M(Iu) ≤ C

∫
|∇u| + C .

(Use the compactness result of [F1, section 4.2.26, p. 432].) �

Proof of Proposition 3.1. First we assume that ϕ ≡ w0 is constant. Let u
be a map in R∞,1

ϕ (C2, RP
2) for which Su =

∑µ
i=1[u, pi][[pi]]. Let A be the set

of regular values of u in RP
2. By Sard’s theorem, H2(A) = vol(RP

2) = 4π.
We estimate the integral

J :=
∫

��2\Gε

∫

C2

∣
∣∇(pw ◦ u)(x)

∣
∣dx dw . (3.8)

We have, by (3.6),

J ≤
∫

C2

∫

��2\Gε

∣∣∇pw(u(x))
∣∣∣∣∇u(x)

∣∣dw dx ≤ C0

∫

C2

|∇u| .

As a result, considering (3.8), there exists some positive measure set
W ⊂ RP

2\Gε such that
∫

C2

∣
∣∇(pw ◦ u)

∣
∣ ≤ C0

2π

∫

C2

|∇u| for all w ∈ W . (3.9)

Since u is radial, for some regular w ∈ A ∩ W , u−1(w) is a finite subset
of C2. We have

Lemma 3.2. There exists w ∈ W such that the map

ũ := pw ◦ u : C2 → G
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is in R∞,1
w0 (C2,G). Moreover if we consider the additive group Z with its

usual norm, for some Ĩ ∈ P1(C2, Z), for which ∂Ĩ = Sũ, the following
properties hold:{

L(Ĩ) = inf
{
L(Ĩ ′) ; Ĩ ′ ∈ F1(C2, Z) , ∂Ĩ ′ = Sũ

}

L(Ĩ) ≤ 1
π

∫
C2 |∇ũ| . (3.10)

where L(Ĩ) is the Z-mass of Ĩ. �

2RP
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a 
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1
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1

1

1

1

1

1

00

11

-1
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-1

3
-2 0

w=u(a)

Figure 1: Projection of u into S1

Remark 3.2. Observe that π1(G) � Z. Moreover L(Ĩ) is the length of
minimal connections connecting the singularities of ũ, introduced in [BrCL].

For a proof of this lemma, see [DH, Propositions 1 and 2]. Observe that
the best constant in inequality (3.10) is achieved by the mean of co-area
formula as in [ABL].

Using Lemma 3.2, we finish the proof of the proposition: Consider the
homomorphism χ in (3.5). By Lemma 2.2, χ induces a group homomor-
phism

χ∗ : Pk(C2, Z) → Pk

(C2, π1(RP
2)

)
.

We consider Ĩ as in Lemma 3.2 and we set I := χ∗(Ĩ). We deduce that
∂I = χ∗(Sũ) . (3.11)
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Meanwhile, by Lemma 3.1, part (ii), we observe that, for all points p ∈ C2,
there exists δ small enough for which

[u, p] =
[
u(∂Bδ(p))

]
π1(��2)

= χ
(
[ũ(∂Bδ(p))]π1(G)

)
= χ

(
[ũ, p]

)

and as a result
Su = χ∗(Sũ) . (3.12)

For visualizing this phenomenon see Fig. 1 where we compare the sin-
gularities of u and pw ◦ u. Comparing this with (3.11) we obtain

∂I = Su .

Observe that |χ(z)| ≤ |z| for all z ∈ Z, thus we have by Lemma 3.2

M(I) = M(χ∗(Ĩ)) ≤ L(Ĩ) ≤ 1
π

∫

C2

∣∣∇(pw ◦ u)
∣∣ .

So using the inequality (3.9), we get

M(I) ≤ C0

2π2

∫

C2

|∇u| .
This completes the proof for constant boundary data. In Fig. 2 we have
illustrated two connections for u and one for pw ◦ u. We show how the
minimal polyhedral connection for u (the thin dashed segments) comes to
be lesser in mass from the image of any connection of pw ◦ u under χ∗ (the
thick curves).

2C
2C

1

1

1

1

00

1

3
-1

-1

-1

-2 0
1

1 1

Figure 2: Connections for u and for pw ◦ u

Now consider the case of non-constant ϕ. We extend u over the cube
C̃2 :=

{
x ∈ R

2 ; ‖x‖ ≤ 1
2 + ε

}

for some ε > 0 as follows:

u(x) := φ

(
1/2 + ε − ‖x‖

ε
x

)
∀x ∈ C̃2\C2 ,

while φ is the smooth extension of ϕ onto C2. Now u is constant on the
boundary of C̃2 and we have clearly∫

�C2

|∇u| ≤
∫

C2

|∇u| + C1
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where C1 depends only on ϕ. Applying the proposition to u on C̃2 as above,
we obtain some I ′ ∈ P1(C̃2, Z2) for which ∂I ′ = Su and M(I ′) ≤ CE(u)+C.
Now since spt Su is a compact set in C2, we observe that there is an open
U ⊂ C2 such that spt Su ⊂ U and ∂U is a convex polygon. Let Π denote
the lipschitz map which leaves U fixed and radially projects points outside
U onto its boundary. This map induces a map

Π# : Pk(C̃2, Z2) → Pk(C2, Z2)
which commutes with the boundary map. Moreover

M(Π#(I ′)) ≤ lip ΠM(I ′) .

So as spt Su ⊂ U , it is easy to see that I := Π#(I ′) satisfies the conditions
of Proposition 3.1. �

Now we present another important result concerning the maps in
R∞,1

ϕ (C2, RP
2). The same singularity removing proposition was proved in

[B2] for H1(B3, S2).
Proposition 3.2. Let I ∈ P1(C2, π1(RP

2)) be a connection for
u ∈ R∞,1

ϕ (C2, RP
2). Then there are maps vm ∈ C∞

ϕ (C2, RP
2) such that






vm = u on C2\Km ,

|Km| ≤ 1
m ,

∫
C2 |∇vm| ≤ ∫

C2 |∇u| + CM(I) + 1
m ·

(3.13)

for some constant C > 0 independent of u. �

This proposition is a special case of Proposition 5.1 which is proved in
the next section.

3.3 Topological singularities for maps in W 1�1+�(C2, RP
2). We

give a proof for Theorem II for M = C2, N = RP
2 and [p] = 1. Let u

be a map in W 1,p(C2, RP
2) such that [p] = 1. We intend to define Su, the

topological singular chain of u as a flat Z2-chain. In fact we are to prove
that for any sequence of maps um ∈ R∞,p(C2, RP

2) ⊂ R∞,1(C2, RP
2), Sum

is a convergent sequence in F0(C2, Z2) and that the limit is independent of
the choice of the sequence um.

Let um be such a sequence. Set as in (3.8)

Jm :=
∫

��2\Gε

∫

C2

∣
∣∇(pw ◦ u)(x) −∇(pw ◦ um)(x)

∣
∣dx dw .

We are to prove that Jm → 0. First observe that for fixed x ∈ C2

∣∣∇(pw ◦ u)(x) −∇(pw ◦ um)(x)
∣∣

≤ C
(|∇pw(u(x))| + |∇pw(um(x))|) ∈ L1(RP

2\Gε)
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(see 3.6). Now, since ∇(pw ◦ um) converge for almost every w ∈ RP
2\Gε to

∇(pw ◦ u), by Lebesgue dominant convergence we get∫

��2\Gε

∣∣∇(pw ◦ u)(x) −∇(pw ◦ um)(x)
∣∣dw → 0

for almost every x ∈ C2. Also we have∫

��2\Gε

∣
∣∇(pw◦u)(x)−∇(pw◦um)(x)

∣
∣dw ≤ C0(ε)

(|∇u(x)|+|∇um|) ∈ L1(C2) .

Thus, again using the Lebesgue dominant convergence, we obtain that Jm

tends to 0 for m → +∞. As a result, there exists w ∈ RP
2\Gε such that

pw ◦ um → pw ◦ u in W 1,1(C2, S1)
and that w is a regular value for all um, i.e.

pw ◦ um ∈ R∞,1(C2, S1) .

Meanwhile, any flat chain with multiplicity in Z is also a real current,
defining a dual functional on the space of compactly supported smooth
differential forms. Now if we set Spw◦u to be the real 0-current (distribution)
defined as follows:

Spw◦u(α) :=
1
2π

∫

C2

(pw ◦ u)∗(dθ) ∧ dα ∀α ∈ C∞
c (C2, R) ,

we get
mr(Spw◦um − Spw◦u) → 0

where by mr(S) we mean the minimal mass of normal currents getting S
as their boundary (see [GMS, vol. II, sect. 5.4.2, Theorem 2]). Moreover,
for a 0-dimensional integral flat chain S in R

n the minimal i.m. rectifiable
current taking S as the boundary is also the minimal real current, i.e. we
have

mr(S) = mi(S) := inf
{
M(T);T ∈ R1(Rn) ∂T = S

}

(see [F2]). As a result, Spw◦u is an integral flat (Spw◦u ∈ F0(C2, Z)) and we
get

F(Spw◦um − Spw◦u) ≤ mi(Spw◦um − Spw◦u) → 0 .

Using Lemma 2.2 and (3.12) we obtain that the flat Z2-chain
Su := χ∗(Spw◦u) = lim

m→∞χ∗(Spw◦um) = lim
m→∞Sum

is independent of the choice of w and that F(Sum − Su) → 0. Since any
two sequences converging to u can be restructured to a single converging
sequence, Su is independent of the converging sequence um too.

Now suppose that Su = 0. Consequently for any sequence of maps um

converging to u in W 1,p(C2, S1), there is polyhedral Z2-chains Im such that
M(Im) → 0
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and that spt (∂Im−Sum) ⊂ ∂C2 (This is what we call a connection when we
do not fix a boundary data.) Using the same method as for the singularity
removing Proposition 3.2, we prove the existence of a sequence of smooth
maps vm : C2 → RP

2 which converge to u in W 1,1. (Here we use the fact
that M(Im) → 0.) Consequently, u is homotopic to constant on any generic
1-skeleton of C2. Using this and referring to [B1, proof of Theorem 1],
we can approximate strongly u by smooth maps in W 1,p(C2, RP

2). This
completes the proof of Theorem II for this special case. �

3.4 Study of sequential weak density in W 1�1
�

(C2, RP
2). We prove

Theorem IV for n = 2 and N = RP
2: For every u ∈ W 1,1

ϕ (C2, RP
2), there

are um ∈ C∞
ϕ (C2, RP

2) such that um → u in L1(C2) and ∇um converge in
the biting sense to ∇u.

Proof. First we approximate u by a sequence uk ∈ R∞,1
ϕ (C2, RP

2) (see
Remark 2.1). Passing to a subsequence if necessary, we can assume that
energies of uk are bounded by the same constant. So, by Proposition 3.1,
there are polyhedral connections Ik for uk such that their masses are equi-
bounded. Using Proposition 3.2, we construct maps uk,m, which converge
almost everywhere to uk and have equibounded energies too. As a result,
um,m tend in L1 to u and their gradients are equibounded in L1 norm. By
([GMS, Vol. I, sect. 1.2.7]), ∇um,m converge in L1 in the biting sense. Fur-
thermore, the limit cannot be other than ∇u, since um,m converge strongly
to u in L1. �

4 Controlling the Mass of Connections

We assume that p > 1 and that N is a (p − 1)-connected smooth compact
manifold of dimension k ≥ p, i.e.

πq(N) = 0 for q < p .

Using the fact that N is (p−1)-connected, we generalize the result of Propo-
sition 3.1 to maps in R∞,p

ϕ (Cn, N). This is what we prove in Proposition 4.1.
As before, the main idea is to conjugate u with a projection of N on the
generators of its p-homotopy group.

Consider some triangulation of N and for 1 ≤ l ≤ k, let N l be the l-
skeleton of N . So N = Nk. Observe that by ([Wh, Theorem (1.6), p. 215]),
Np is (p − 1)-connected and the homomorphisms

χp,l : πp(Np) → πp(N l) ,
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induced by the injection maps ip,l : Np → N l, are onto. As a result, using
[GrM, Corollary 3.5, p. 38], Np is of the homotopy type of a bouquet of p-
spheres and we obtain that πp(Np) is finitely generated. Let g1, . . . , gβ be
its generators. As a result, πp(N l) is finitely generated too. We choose its
generators among {χp,l(g1), . . . , χp,l(gβ)} and we define a norm on πp(N l),
p ≤ l ≤ k, as follows: For a ∈ πp(N l), |a| is the smallest length of a product
of generators of πp(N l) representing a. Observe that there is some constant
C > 0 such that

|χp,l(g)| ≤ C|g| , ∀g ∈ πp(Np) . (4.1)

Since π1(N) = 0, Su ∈ Pn−p−1(Cn, πp(N)) is well defined for any
u ∈ R∞,p

ϕ (Cn, N) (see Definition 2.8). We proceed as before by general-
izing the concept of connections:

Definition 4.1. We say that T ∈ Fn−p(Cn, πp(N)) is a connection for
u ∈ R∞,p

ϕ (Cn, N) if ∂T = Su.

We write

N l =
sl⋃

i=1

ξl
i(B

l) ,

where
ξl
i : Bl → N l

i := ξl
i(B

l) , i = 1, . . . , sl ,

are diffeomorphisms and each two N l
i are rather disjoint or intersecting on

a lower dimensional face in N l−1.
Now let w ∈ N l

1 × · · · × N l
sl

, w = (w1, . . . , wsl
) be such that wi /∈ N l−1.

Define
pl

w : N l\{w1, . . . , wsl
} → N l−1

as follows:

pl
w(y) :=

{
ξl
i

(
p((ξl

i)
−1(wi), (ξl

i)
−1(y))

)
if y ∈ N l

i\N l−1 ,
y otherwise ,

(4.2)

where p is the projection defined in definition 2.9.

Lemma 4.1. Let p + 1 ≤ l ≤ k, then

(i) pl
w is well defined and locally lipschitz on N\{w1, . . . , wsl

}.

(ii) For any p-dimensional cycle G′ ⊂ N\{w1, . . . , wsl
} we have

[G′]πp(N l) = χl[pl
w(G′)]πp(N l−1) (4.3)

where
χl : πp(N l−1) → πp(N l)

is the homomorphism induced by the injection map il : N l−1 → N l.
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(iii) For any w′ ∈ N l,
∫

N l
1,ε×···×N l

sl,ε

∣
∣∇pw(w′)

∣
∣pdw ≤ C(p, l, ε) < +∞ , (4.4)

where for 1 ≤ i ≤ sl and 0 < ε < 1,

N l
i,ε := ξl

i

(
Bl(0, 1 − ε)

)
. �

Remark 4.1. Since N is (p−1)-connected, πp(N) ≡ Hp(N, Z) (Hurewicz
theorem). So the homotopy class of p-cycles in N is well defined.

Proof. Using (2.5), the lemma is proved as for Lemma 3.1. �

Now let us estimate the integral

J :=
∫

N l
1,ε×···×N l

sl,ε

∫

Cn

∣∣∇(pw ◦ u)(x)
∣∣pdx dw . (4.5)

for u ∈ W 1,p(Cn, N l), for p < l. By (4.4) we have

J ≤
∫

Cn

∫

N l
1,ε×···×N l

sl,ε

∣∣∇pw(u(x))
∣∣p∣∣∇u(x)

∣∣pdw dx

≤ C(p, l, ε)
∫

Cn

|∇u|p.
As a result, by considering (4.5), there is some positive measure set W ⊂ N l

ε

:= N l
1,ε × · · · × N l

sl,ε
⊂ R

lsl for which
∫

Cn

∣∣∇(pw ◦ u)
∣∣p ≤ C(p, l, ε)

Hlsl(N l
ε)

∫

Cn

|∇u|p , ∀w ∈ W . (4.6)

Lemma 4.2. Let l > p and ul ∈ Rp,∞
w0 (Cn, N l) for some w0 ∈ N l−1. Then

there is a map ul−1 : Cn → N l−1 and C > 0, independent of ul, such that

(i) ul−1 ∈ R∞,p
w0 (Cn, N l−1);

(ii)
∫
Cn |∇ul−1|p ≤ C

∫
Cn |∇ul|p;

(iii) Sul = χl∗(Sul−1);

where χl : πp(N l−1) → πp(N l) is the homomorphism induced by the injec-
tion map il : N l−1 → N l. �

Proof. Let us fix 0 < ε < 1 and consider the set W ⊂ N l
ε as in (4.6). Also

we fix ε1, ε2, ε3 > 0 and 0 < δ < δ1 such that
C(l, p, ε)
Hlsl(N l

ε)

(
K2

∫

V δ1

|∇ul|p + δKε2 + ε1

)
+ ε3 ≤

∫

Cn

|∇ul|p , (4.7)

where K, δ and δ1 satisfy (2.3). For almost all w = (w1, . . . , wsl
) ∈ W ,

wi’s are regular values for ul|Cn\V δ and ul|∂V δ , which are smooth on their
domains. Using (2.3) and by the co-area formula we obtain that for almost
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all w ∈ W , (ul)−1(wi) ∩ (Cn\V δ) is a finite mass smooth submanifold of
Cn\V δ, of dimension n− l, while its boundary is also a finite mass subman-
ifold of ∂V δ, of dimension n − l − 1. We fix such w and we observe that
for all ε′ > 0, there is fε′ , some lipschitz diffeomorphism of Cn, such that
fε′ is the identity map except on a small neighborhood of

⋃sl
i=1(u

l)−1(wi),
and we have




fε′(V δ) = V δ , fε′(∂V δ) = ∂V δ,

(ul ◦ fε′)−1(wi) ∩ (Cn\V δ) is a polyhedral (n−l)-submanifold of Cn\V δ

(ul ◦ fε′)−1(wi) ∩ (∂V δ) is a polyhedral (n − l − 1)-submanifold of ∂V δ,
∫
Cn

∣∣∇(ul ◦ fε′) −∇ul)
∣∣p < ε′,

∫
∂V δ

∣
∣∇(ul ◦ fε′) −∇ul

∣
∣p < ε′,

(4.8)
Let ε′ = min{ε1, ε2} and denote vl := (ul ◦ fε′)δ. Using (2.3) and (4.8)

we get
∫

Cn

|∇vl|p =
∫

V δ

∣∣∇(ul ◦ fε′)δ
∣∣p +

∫

Cn\V δ

∣∣∇(ul ◦ fε′)
∣∣p

≤ δK

∫

∂V δ

∣∣∇(ul ◦ fε′)
∣∣p +

∫

Cn\V δ

|∇ul|p + ε1

≤ δKε2 + δK

∫

∂V δ

|∇ul|p +
∫

Cn\V δ

|∇ul|p + ε1

≤
∫

Cn

|∇ul|p +
(

δKε2 + ε1 + K2

∫

V δ1

|∇ul|p
)

.

(4.9)

We observe that vl is continuous on Cn\B and since fε′ is a diffeomorphism,
it has the same homotopic singularity as ul on components of B. Now by
(4.6) we have

∫

Cn

∣∣∇(pw ◦ vl)
∣∣p ≤ C(l, p, ε)

Hlsl(N l
ε)

∫

Cn

|∇vl|p . (4.10)

So as a result vl−1 := pw ◦ vl ∈ W 1,p
w0 (Cn, N l−1). Observe that by construc-

tion vl−1 is locally lipschitz away from

Σ(vl−1) =
sl⋃

i=1

(ul ◦ fε′)−1
δ (wi) ∪ B .

Moreover by (4.8), (ul ◦ fε′)−1
δ (wi) is a finite union of (n − l)-dimensional

polyhedra supported in Cn. Thus, since n− l ≤ n− p− 1, we can find some
ul−1 ∈ R∞,p

w0 (Cn, N l−1) such that ul−1 has the same topological singularities
as vl−1, and
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∫

Cn

|∇ul−1 −∇vl−1|p ≤ ε3 .

This fact, combined with (4.7), (4.9) and (4.10) yields:
∫

Cn

|∇ul−1|p ≤
(

C(l, p, ε)
Hlsl(N l

ε)
+ 1

)∫

Cn

|∇ul|p .

We have proved so far parts (i) and (ii) of Lemma 4.2. Part (iii) is a
direct consequence of (4.3) and the construction of ul−1, using the same
argument as in proof of Proposition 3.1 (see (3.12)). �

Lemma 4.3. Let N be a (p−1)-connected smooth compact manifold. Let
u ∈ R∞,p

ϕ (Cn, Np) such that ϕ is constant. Then there exists polyhedral
chain T ∈ Pn−p(Cn, πp(Np)) such that

{
∂T = Su

M(T ) ≤ C
∫
Cn |∇u|p (4.11)

for some constant C > 0 independent of u. �

Proof. As we observed above, Np is (p− 1)-connected too and it is finitely
generated. Let g1, . . . , gβ be its generators. By ([GrM, Corollary 3.5,
P. 38]), we observe that there are smooth maps pi : Np → Sp, i = 1, . . . , β,
such that

[pi(G)]πp(Sp) = αi([G]πp(Np)) for any p − cycle G ⊂ Np, (4.12)
where, for every a ∈ πp(Np),

a =
β∑

i=1

αi(a)gi

is its unique decomposition. Meanwhile, for every u ∈ R∞,p
ϕ (Cn, Np), pi ◦u

is in R∞,p
ϕ (Cn, Sp). Since ϕ is constant, by [ABL] and the approximation

theorem 5.6 in [Fl], there is Ti ∈ Pn−p(Cn, Z) such that
{

∂Ti = Spi◦u
M(Ti) ≤ Ci

∫
Cn

∣
∣∇u(pi ◦ u)

∣
∣p (4.13)

where Ci > 0 is independent of u. (See also [P1] for detailed discussion
for S2).

Now consider the one-to-one group homomorphism κi : Z → πp(Np),
i = 1, . . . , β, defined by κi(n) = ngi . Observe that we have

β∑

i=1

κi(αi(a)) = a ∀a ∈ πp(Np) ,

which combined with (4.12) gives
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β∑

i=1

κi
∗(Spi◦u) = Su .

Moreover, κi∗ satisfies

M(κi
∗(T )) ≤ C ′

iM(T ) ,

for some constant C ′
i independent of T . We set

T :=
β∑

i=1

κi
∗(Ti) .

So T is a polyhedral πp(Np)-chain, of dimension n−p and supported in Cn.
Using Lemma 2.2 and (4.13) we obtain

∂T =
β∑

i=1

κi
∗(Spi◦u) = Su

and

M(T ) ≤
β∑

i=1

C ′
iM(Ti) ≤

β∑

i=1

C ′
iCi

∫

Cn

∣
∣∇(pi ◦ u)

∣
∣p .

This completes the proof since the pi are smooth. �

Using the above stated lemmas, we prove the following important result:

Proposition 4.1. For any integer p, 2 ≤ p ≤ k, let N be a k-dimensional
(p−1)-connected compact smooth manifold. Let Cn be the unit cube in R

n.
Then for u ∈ R∞,p

ϕ (Cn, N), there is T ∈ Pn−p(Cn, πp(N)) such that
{

∂T = Su

M(T) ≤ C
∫ |∇u|p + C

(4.14)

for some constant C > 0 independent of u. �

Corollary 4.1. For any u ∈ R∞,p
ϕ (Cn, N), there is a minimal connection

Tu ∈ Fn−p(Cn, πp(N)) which satisfies

M(Tu) ≤ C

∫
|∇u|p + C .

(See Corollary 3.1). �

Proof of Proposition 4.1. It is sufficient to prove the proposition for
ϕ = w0 ∈ Np, constant. Using the same method as in the proof of
Proposition 3.1, combined with the approximation Theorem 5.6 in [Fl],
the proof is generalized for any smooth boundary data.
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Write Nk = N and uk = u. Using Lemma 4.2 successively we obtain a
map up ∈ R∞,p

w0 (Cn, Np), which satisfies
{∫

Cn |∇up|p ≤ C1

∫
Cn |∇u|p

χ∗(Sup) = Su

(4.15)

where χ : πp(Np) → πp(N) is the natural homomorphism and C1 is inde-
pendent of u. We apply Lemma 4.3 to up and get some Tp∈Pn−p(Cn,πp(Np))
such that

M(Tp) ≤ C2

∫

Cn

|∇up|p

and
∂Tp = Sup .

Combining with (4.15) and applying Lemma 2.2, using (4.1), we observe
that T := χ∗(Tp) satisfies (4.14). �

5 Removing the Singularities Using Finite Energy

In the section, we prove that we can remove the singularities of a map
u ∈ R∞,p

ϕ (Cn, N) by modifying it along one of its polyhedral connections
and using an energy almost proportional to the mass of the connection.
The idea first appeared in [B2] for H1(B3, S2). Our proof uses a different
approach since the situation is technically more involved. Note that we use
the same norm defined for πp(N) as in section 4 and the method may not
work for non-equivalent norms. This is the exact statement of what we
prove in this section:

Proposition 5.1. Let p > 1 be an integer and let N be a k-dimensional
simply connected closed manifold. Assume that πp(N) is finitely generated.
If T ∈ Pn−p(Cn, πp(N)) is a connection for u ∈ R∞,p

ϕ (Cn, N), there are maps
um ∈ C∞

ϕ (Cn, N) such that
{

um
Lp−→ u as m → ∞

∫
Cn |∇um|p ≤ ∫

Cn |∇u|p + CM(T) + O
(

1
m

) (5.1)

for C > 0 independent of u. The same result holds when p = 1 if π1(N) is
abelian. �

First we prove two lemmas necessary for the proof of this proposition.

Lemma 5.1. For every g ∈ πp(N), there exists an open covering of N ,
{Ug

1 , . . . , Ug
νg}, and smooth maps

ωg,j : Bp × Ug
j → N , j = 1, . . . , νg ,
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such that 




ωg,j( . |∂Bp , y) ≡ y ∀y ∈ N
[
ωg,j( . , y)

]
πp(N)

= g ∀y ∈ N
∫
Bp

∣
∣∇xωg,j( . , y)

∣
∣pdx ≤ C|g| ∀y ∈ N

|∇ωg,j|∞ ≤ Cg

(5.2)

where C > 0 is independent of g and j. �

Proof. Let h1, . . . , hγ be the generators of πp(N). Since N is compact we
can find a finite open covering of N , {U1, . . . , Uν}, and smooth maps

ωi,j : Bp × Uj → N

such that for all i, j and all y ∈ N we have
{

ωi,j(.|∂Bp , y) ≡ y
[
ωi,j( . , y)

]
πp(N)

= hi .
(5.3)

Now we write g ∈ πp(N) in its minimal length decomposition

g = hi1 + · · · + his ,

where s = |g|. For y ∈ N , x ∈ Bp and ρ = 1, . . . , s, we set

ωg,x(y) := ωiρ,jρ

(
sx − (ρ − 1)

x

|x| , yρ

)
if

ρ − 1
s

≤ |x| ≤ ρ

s
,

where ys := y ∈ Ujs and for ρ = 1, . . . , s − 1,

yρ := ωiρ+1,jρ+1(0, yρ+1) ∈ Ujρ .

Observe that by slightly modifying ωg,x : Bp → N , we can assume that it
is smooth on its domain. Moreover it will satisfy






ωg,y|∂Bp ≡ y

[ωg,y]πp(N) = g
∫
Bp |∇ωg,y|p ≤ Cs = C|g|

for C > 0 independent of g and y. Another observation shows that ωg,y

depends smoothly on y in small neighborhoods. Since N is compact, we can
find a finite open covering for it, {Ug

1 , . . . , Ug
νg}, such that for j = 1, . . . , νg

ωg,j(x, y) := ωg,y(x) , if y ∈ Ug
j

satisfy (5.2). �

Lemma 5.2. Let u ∈ R∞,p
ϕ (Cn, N) and Σ ⊂ Cn be an oriented polyhedral

of dimension n − p such that u is continuous on Σ except probably on its
boundary. Then for every g ∈ πp(N), there is a sequence um ∈ W 1,p

ϕ (Cn, N)
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and C > 0 independent of g and u such that





um = u on Cn\Km

|Km| → 0 as m → ∞
∫
Cn |∇um|p ≤ ∫

Cn |∇u|p + C|g||Σ| + 1
m

(5.4)

and
Sum = Su − g[[∂Σ]] . �

Proof. We identify R
n with R

n−p × R
p with variables X ∈ R

n−p, Y ∈ R
p.

Without loss of generality we can assume that Σ lies in the plane R
n−p×{0}.

We divide Σ in polyhedra of equal dimension

Σ :=
νg⋃

j=1

ij⋃

i=1

Σi
j

such that u(Σi
j) ⊂ Ug

j for all i, j. We choose B as in section 2.2 such that
νg⋃

j=1

ij⋃

i=1

∂Σi
j ⊂ B

and we replace u by uδ1 for δ1 small enough (see Definition 2.5). This
doesn’t much change the energy of u and Suδ1

= Su, so it is sufficient to
prove the lemma for u = uδ1 . Since u is radial, we have for some constant
C1 > 0

|∇u(x)| ≤ C1 if x ∈ Cn\Vδ1 , |∇u(x)| ≤ C1

‖x − B‖ if x ∈ Vδ1 . (5.5)

We set for η � δ < δ1 and (X,Y ) ∈ Cn\Vδ

vδ,η(X,Y ) :=






u(X,Y ) if (X, 0)/∈Σ or if |Y |≥η

u
(
X, 2Y − η Y

|Y |
)

if (X, 0)∈Σ and η
2≤|Y | ≤ η

ωg,j

(
2
ηY, u(X, 0)

)
if (X, 0)∈⋃ij

i=1 Σi
j and |Y |≤η

2 .

(5.6)

We set
Ση :=

{
(X,Y ); (X, 0) ∈ Σ, |Y | ≤ η

}
.

and we observe that vol(∂V δ ∩ Ση) = O(ηp). Using (2.2), (2.3) and (5.5)
we get

∫

Vδ

∣∣∇(vδ,η ◦ hδ) −∇u
∣∣p ≤ δK

∫

∂Vδ∩Ση

(
CgC2

η
+ C1

)p

≤ O(δ)

for C2 > 0 independent of δ. Moreover for fixed δ we have
∫

Cn\Vδ

|∇vδ,η −∇u|p ≤ C|g||Σ| +
∫

Ση

(
CgC2

δ
+ C1

)p

≤ C|g||Σ| + O(η) .
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As a result, by choosing successively suitable δ and η, um := (vδ,η)δ will
satisfy (5.4). Moreover we have

Sum = Su ± g[[∂Σ]] .

If necessary, we get the good sign by replacing g by −g above. �

Proof of Proposition 5.1. We write

T =
θ∑

i=1

gi[[Σi]] .

Put u0
m := u and for i = 1, . . . , θ, let ui

m be the m-th element of the
sequence obtained by applying Lemma 5.2 to ui−1

m for Σi, gi. We get

Suθ
m

= Su −
θ∑

i=1

gi[[∂Σi]]

= Su − ∂T = 0 ,

and we observe that uθ
m satisfy (5.1). Pay attention that Suθ

m
= 0 means

that uθ
m, restricted to almost every small enough p-cycle in Cn, is homotopic

to constant in N . Using this and referring to [B1, proof of Theorem 1],
we can strongly approximate uθ

m by smooth maps in C∞
ϕ (Cn, N). This

completes the proof. �

6 Proof of Theorems II, III and IV

Theorem II is proved using the same arguments as for W 1,1+ε(C2, RP
2), re-

garding the fact that we have developed the necessary tools above. Observe
that the equality

mi(S) = mr(S)

holds true for any integral flat chain S in R
n if and only if S is of dimension 0

or codimension 2 in R
n (see [F2]). Thus our method cannot be used for [p]

taking a value other than 1 or n − 1.
Considering Propositions 4.1 and 5.1, Theorem III is proved the same as

in section 3.4. The only difference is that since p > 1, a bounded sequence
in W 1,p

ϕ (Cn, N) has a weakly convergent subsequence.
Propositions 4.1 and 5.1 hold for p = 1, abelian π1(N), thus Theorem IV

is proved with the same method.
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7 Global Singularities and Inverse Images

In this section we will prove Theorem I. That is, we will prove that if M
is a smooth simply connected compact manifolds, then smooth maps are
sequentially sense in W 1,2(M,N) for any smooth closed manifold N .

The idea is essentially the same as in previous sections. We will not
repeat some technical details in order to concentrate on the main difference
between local and global singularity cases. Also we assume that M is closed.
The theorem can be proved by slight modifications as exposed in previous
cases for the general situation.

As before, we define R2,∞(M,N) to be the space of maps which are
smooth except on a finite union of k-dimensional submanifolds of M for k ≤
n − 3 (n=dimM). R2,∞(M,N) is strongly dense in W 1,2(M,N) (see [B1]
and [HaL2]), and any map u ∈ W 1,2(M,N) can be strongly approximated
by a sequence of maps in R2,∞(M,N). Then the theorem is reduced to
prove that any map in R2,∞(M,N) can be approximated weakly by smooth
maps with equibounded energy.

Naturally we can define Su, the local topological singularity of any
map u ∈ R2,∞(M,N) using the homotopy class of u around its (n − 3)-
dimensional singularities. By methods described above, we can approxi-
mate u by a sequence of equibounded maps um ∈ R2,∞(M,N) for which
Sum = 0. But the condition Sum = 0 would not be sufficient for approxi-
mating this map by smooth maps in the strong topology. We have described
this situation in our introduction, regarding an example given by F. Hang
and F.H. Lin [HaL1].

We approximate u ∈ R2,∞(M,N) with equibounded maps which satisfy
a stronger condition. This condition, introduced in [HaL2] by the authors,
is the necessary and sufficient condition for a map in R2,∞(M,N) to be
strongly approximable by smooth maps: Indeed, if for u ∈ R2,∞(M,N),
u|M2 is extendable to a smooth map ũ : M → N for every “generic”
2-skeleton M2 of M , then u can be approximated by smooth maps in
W 1,2(M,N) (see [HaL2, Theorem 6.2]). So for proving the theorem it
suffices to prove the following lemma:

Definition 7.1. u ∈ R2,∞(M,N) satisfies the 2-skeleton condition if and
only if u|M2 is extendable to a smooth map ũ : M → N for every “generic”
2-skeleton M2 of M .

Lemma 7.1. Any u ∈ R2,∞(M,N) can be approximated in L2 by a
sequence of maps um ∈ R2,∞(M,N) such that the um satisfy the 2-skeleton
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condition and that for C > 0 independent of u we have∫

M
|∇um|2 ≤ C

∫

M
|∇u|2. �

Proof. Let us fix some notation. Let N2 be the 2-skeleton of N for some
cubization. Also let P : N → N2 be the projection obtained by mapping
inductively N l on N l−1 by the method described in section 4, i.e.

P := p3
w3 ◦ · · · ◦ pk

wk

where pl
wl is the map defined in (4.2). By choosing suitable wl we can be

sure that for some constant C > 0 independent of u we have∫

M
|∇u2|2 ≤ C

∫

M
|∇u|2 ,

where u2 := P ◦ u. We consider also the onto group homomorphism χ2,k :
π2(N2) → π2(N) which we will refer to simply by χ. So as in Lemma 4.1
we have

χ
(
[P(G)]π2(N2)

)
= [G]π2(N) , (7.1)

for any 2-cycle G in N .
Now as in Lemma 4.3 we observe that N2 is simply connected too and

that π2(N2) is finitely generated. Let g1, . . . , gβ be its generators. By [GrM,
Corollary 3.5, P. 38], we observe that there are smooth maps pi : N2 → S2,
i = 1, . . . , β, such that

[pi(G)]π2(S2) = αi([G]π2(N2)) for any 2 − cycle G ⊂ N2, (7.2)
where, for every a ∈ π2(N2),

a =
β∑

i=1

αi(a)gi

is its unique decomposition. Meanwhile, for every u ∈ R∞,2(M,N2), pi ◦ u
is in R∞,2(M,S2). By using the co-area formula as in [ABL] we obtain
that there are points yi ∈ S2, i = 1, . . . , β, for which the inverse image
Ti := (pi ◦u2)−1(yi) is a smooth (n−2)-dimensional submanifold of M and
that

Hn−2(Ti) ≤ C

∫

M
|∇u2|2

for some constant C > 0 independent of the choice of u. We orient the Ti

using the standard orientation frame on S2.
We now construct the maps um which satisfy the conditions of the

lemma. Using the same methods as in Lemma 5.2, we modify u along the
inverse images Ti in their δ-neighborhoods by introducing in 2-dimensional
topological disks orthogonal to Ti in M new maps generating χ(gi). We
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can do this by using a controlled amount of energy since the volume of each
Ti is controlled by the energy of u and the energy necessary for realizing
the χ(gi), i = 1, . . . , β, as a cycle, based on any point of N , is uniformly
bounded (see Lemma 5.1). So by tending δ to zero we obtain a sequence
of maps um ∈ R2,∞(M,N), converging in L2 to u. We should prove that
the um satisfy the 2-skeleton condition to prove the lemma.

By (7.1) and (7.2), we obtain, for any generic 2-cycle G in M ,

[
pi ◦ P ◦ um(G)

]
π2(S2)

=
[
pi ◦ u2(G)

]
π2(S2)

±
β∑

j=1

njαi(kj) ,

where nj is the topological intersection number between G and Tj in M and
χ(kj) = χ(gj). Observe that as um is in R2,∞(M,N), it is smooth on any
generic 2-cycle G ⊂ M or on any generic 2-skeleton M2 of M . Meanwhile
another simple topological observation shows that

[
pi ◦ u2(G)

]
π2(S2)

= ni .

Combining these facts with (7.1) and (7.2), and by changing, if necessary,
the orientation of our modifying maps in the transversal disks, we obtain,
for any generic 2-cycle in M ,

[
um(G)

]
π2(N)

= χ

( β∑

i=1

[
pi ◦ P ◦ um(G)

]
π2(S2)

gi

)

=
β∑

i=1

(
ni −

β∑

j=1

njαi(kj)
)

χ(gi)

=
β∑

i=1

niχ(ki) −
β∑

i=1

β∑

j=1

njαi(kj)χ(gi)

=
β∑

i=1

ni

β∑

j=1

αj(ki)χ(gj) −
β∑

i=1

β∑

j=1

njαi(kj)χ(gi) = 0 .

As a result, for any generic 2-skeleton M2 of M , (um|M2)∗ : π2(M2) →
π2(N), the induced group homomorphism of u on the second homotopy
groups of M2 and N is the trivial map. Meanwhile π1(M) = 0, so M2 is
of the same homotopy type of a bouquet of spheres. Consequently, um|M2

is homotopic to a constant in N . So it can be extended to a smooth map
from M into N . The um satisfy the 2-skeleton condition: This completes
the proof of the lemma and consequently that of the Theorem I for the case
π1(N) = 0.
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Now let N be any closed manifold for which π1(N) �= 0. Trying to
adapt the method used for proving the theorem for the simply connected
case, the main problem to overcome is that in this case N2 may not be
of the same homotopy type as a bouquet of spheres. Another problem is
that π2(N2) may be infinitely generated, which gives us some problems in
controlling the energy of the modified maps.

For overcoming these problems we should use an approach different
from that of CW-complexes. That is, in place of a cubization of N , we will
consider this time its handle decomposition in the increasing index order.
The readers can refer to [GoS] for detailed information on handles. Briefly,
a handle of index i is a copy of Di × Dk−i, attached to the boundary of a
k-manifold X along ∂Di × Dk−i by an embedding ϕ : ∂Di × Dk−i → ∂X.
Note that attaching an i-handle is equivalent to attaching an i-cell up to
homotopy as we can think of an i-handle as an i-cell thickened up to be
k-dimensional. We refer to this i-cell as the core of the handle. By a handle
decomposition of N we mean an identification of N with a smooth manifold
obtained from the empty set by attaching handles. There is always a handle
decomposition of the closed smooth manifold N so that the handles are
attached in order of increasing index, where the handles of the same index
can be attached in any order (see [GoS, Proposition 4.2.7]). From now
on, by N l, we refer to the smooth k-manifold (probably with boundary)
obtained after attaching the l-handles in the handle decomposition of N .
The N l will play the same role here as the l-skeleton of N in the previous
parts of this paper, which we had similarly referred to by N l.

We consider the smooth Riemannian manifold Ñ , the universal covering
of N , and the corresponding fibration F : Ñ → N . We assume that Ñ is
equipped with the pullback metric under F and is embedded isometricly
in some R

N ′
such that F is a local isometry. We consider N2 as defined

in the last paragraph and again we observe that π1(N) = π1(N2) and for
2 ≤ l ≤ k, the homomorphisms

χ2,l : π2(N2) → π2(N l) ,

induced by the injection maps i2,l : N2 → N l, are onto (see [GoS, p. 111]).
Set

Ñ2 := F−1(N2) .

Since π1(N2) = π1(N) and using the homotopy theory, we deduce that Ñ2

is the universal covering of N2 as a smooth k-manifold and that F |
�N2 is
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the corresponding fibration. Observe that this diagram is commutative:

π2(Ñ2)
�χ2,k

−→ π2(N)


�(F |

�N2)∗

�F∗

π2(N2)
χ2,k

−→ π2(N)

(7.3)

where χ̃2,k : Ñ2 → Ñ is induced by the injection map ĩ2,k : Ñ2 → Ñ and is
onto. Also

F∗ : π2(Ñ) → π2(N) and (F |
�N2)∗ : π2(Ñ2) → π2(N2)

are isomorphisms. Thus, since π1(Ñ2) = π1(Ñ) = 0, using ([GrM, Corol-
lary 3.5, P. 38]) we obtain that Ñ2, when deformed smoothly into its 2-
dimensional core, is of the homotopy type of a probably infinite bouquet of
spheres.

Any u ∈ R2,∞(M,N) can be lifted to a map ũ : M → Ñ as π1(M\Σ(u))
= 0. (Remember that π1(M) = 0 and that Σ(u) is of codimension 3 in M).
Since F is a local isometry, we get that ũ ∈ R2,∞(M,N) and that

∫

M
|∇ũ|2 =

∫

M
|∇u|2 . (7.4)

Let u ∈ W 1,2(M,N) and um ∈ R2,∞(M,N) a sequence converging
strongly to u. Using the same method as in Proposition 4.1 we can prove
the existence of some constant C > 0 independent of um, and maps
u2

m ∈ R2,∞(M,N2) such that
∫

M
|∇u2

m|2 ≤ C

∫

M
|∇um|2. (7.5)

In fact, here we define the projections pl : N l → N l−1 using the handle
decomposition of N . pl : N l → N l−1 is defined by tearing up the l-handles
attached to N l−1 on some k − l dimensional disk transversal to their cores
and projecting the handle on its boundary lying in ∂N l−1. Since the di-
mension of the core is greater than 2 for l > 2, by an average type argument
as in the proof of Proposition 4.1, we can be sure that for a suitable choice
of the tearing point in the core,∫

M
|∇pl ◦ ul|2 ≤ C l

∫

M
|∇ul|2

when uk := u, ul := pl+1 ◦ ul+1 are defined by induction and the C l are
independent of the choice of u ∈ R2,∞(M,N).
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Now consider the liftings ũ2
m ∈ R2,∞(M, Ñ2). We observe that Ñ2 is

simply connected. Let {gi ; i ∈ N} be the generators of π2(Ñ2). Recall that
π1(N) acts on Ñ2 and the action is isometric and transitive. We show this
action by the function h(·) for h ∈ π1(N). Then h∗ : π2(Ñ2) → π2(Ñ2) is
the induced isomorphism corresponding to the action of h on Ñ2.
Lemma 7.2. There is a finite subset, {g1, . . . , gs}, of the generators of

π2(Ñ2) such that for any generator gi of π2(Ñ2), there exists h ∈ π1(N)
and 1 ≤ j ≤ s such that gi = h∗(gj). Moreover there are smooth maps
pi : N2 → S2, i = 1 ∈ N, such that

[
pi(G)

]
π2(S2)

= αi

(
[G]

π2(�N2)

)
for any 2 − cycle G ⊂ N2, (7.6)

where, for every a ∈ π2(Ñ2),

a =
∞∑

i=1

αi(a)gi

is its unique decomposition. Meanwhile, for every v ∈ R∞,2(M, Ñ2), pi ◦ v
is in R∞,2(M,S2). In fact we have

∞∑

i=1

∫

M

∣
∣∇(pi ◦ v)

∣
∣2 ≤ C

∫

M
|∇v|2 (7.7)

for some C > 0 independent of v. Also if gi = h∗(gj) for h ∈ π1(N), then
pj = pi ◦ h. �

Proof. This lemma is deduced from the fact that Ñ2 is the universal cov-
ering of N2 which is compact and has a finite handle body decomposition.
By retracting the handles onto their cores in increasing index order, we
observe that N2 can be retracted smoothly onto a bouquet of smooth man-
ifolds N 2 =

∨s
i=1 Si, where the Si are either versions of S1 or compact

surfaces. Therefore, N 2 is a basic bouquet of compact surfaces, N 2
0 , for

which π2(N 2
0 ) = 0, to which we have attached a finite number of topologi-

cal S2’s or RP
2’s which we rename to S1, . . . , Ss. Observe that the inverse

image of any point in N 2 under the retraction map is simply-connected.
Consequently, Ñ2 can be retracted smoothly onto Ñ 2, a universal cover-
ing for N 2, which contains a union of infinitely many disjoint topological
spheres S2

i , i ∈ N, relied by a simply-connected skeleton to each other such
that the intersection of each S2

i with the skeleton is a set of isolated points.
As an example if N 2 is S1 ∨ S2, then Ñ 2 would be a countable number
of spheres attached to a line. Observe that there is a natural one-to-one
correspondence between the gi, the generators of π2(Ñ2) and the S2

i . Also
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for any i ∈ N, there exists 1 ≤ j ≤ s such that F (S2
i ) = Sj, where F is

the covering map. Thus if gi = h∗(gj) for h ∈ π1(N), then S2
i = h(S2

j ).
We define p̂i to be the identity map on S2

i and to map Ñ 2\S2
i to the cor-

responding fixed points in S2
i . Also for 1 ≤ j ≤ s, let p̃j : N 2 → Sj be

the natural projections of the bouquet N 2 onto its components. If Sj is
a sphere, then p̃′j is defined to be the conjugation of p̃j ◦ F with a fixed
diffeomorphism of Sj into S2. If Sj is a projective space, we should first lift
p̃j ◦ F to the universal covering of Sj = RP

2 which would be a topological
sphere. We put

pi := p̃′j ◦ p̂i : Ñ 2 → S2

for when F (S2
i ) = Sj . Observe that if gi = h∗(gj), then pj = pi ◦ h. Since

Ñ 2 is a deformation retract of Ñ2 which is a lifting of a deformation retract
of N2 onto N 2, we can extend the pi and the p̃′j onto Ñ2 by conserving
the same properties. The lemma is a straightforward consequence of this
construction. �

Proposition 7.1. For i ∈ N, there is yi ∈ S2, the image of a unique
point ŷi ∈ S2

i under pi, and a regular value for any pi ◦ ũm, such that if
pj = pi ◦ h for h ∈ π1(N), then yi = yj. Moreover for a subsequence of um

the inverse image Tm
i := (pi ◦ ũ2

m)−1(yi) is a smooth (n − 2)-dimensional
submanifold of M and

∞∑

i=1

Hn−2(Tm
i ) ≤ C

∫

M
|∇u|2 + C

for C > 0 independent of m. �

Proof. By using the co-area formula as in [ABL] we obtain
s∑

j=1

intS2Hn−2
(
(p̃′j ◦ ũ2

m)−1(y)
)
dy ≤ C

∫

M
|∇ũ2

m|2 ≤ C

∫

M
|∇u|2 + C .

Thus, by Fatou’s lemma
∫

S2

lim inf
m→+∞

s∑

j=1

Hn−2
(
(p̃′j ◦ ũ2

m)−1(y)
)
dy ≤ C

∫

M
|∇u|2 + C .

As a result, the subset
{

y ∈ S2; lim inf
m→+∞

s∑

j=1

Hn−2
(
(p̃′j ◦ ũ2

m)−1(y)
) ≤ 1

4π

(
C

∫

M
|∇u|2 + C

)}

is of positive measure in S2. This, combined with Sard’s theorem yields that
there are points yj ∈ S2 for which the inverse images T̃m

j := (p̃′j ◦ ũ2
m)−1(yj)
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are smooth (n − 2)-dimensional submanifold of M and that

s∑

j=1

Hn−2(T̃m
j ) ≤ C

∫

M
|∇u|2 + C

for some constant C > 0 independent of the choice of m. For i ∈ N

let yi := yj if F (S2
i ) = Sj. Note that (p̃′j)

−1(yj) is the disjoint union of
the p−1

i (yi) over all the i satisfying F (S2
i ) = Sj. Thus the yi satisfy the

conditions of the proposition. �

We orient the Tm
i using the standard orientation frame on S2. Now

observe that um(T i
m) ⊂ Bi := (pi ◦ P)−1(yi) which is a smooth compactly

supported submanifold of Ñ . We are to construct the maps ṽm which
will satisfy the 2-skeleton condition with respect to M and Ñ . Using the
same methods as in Lemma 5.2, we modify ũm along the inverse images
Tm

i in their δ-neighborhoods by introducing in 2-dimensional topological
disks orthogonal to Tm

i in M new maps generating χ̃2,k(gi). We can do
this by using a controlled amount of energy since the sum of the volumes
of the Tm

i is controlled by the energy of u and the energy necessary for
realizing the χ̃2,k(gi), as a cycle, based on a point in Bi , is uniformly
bounded independent of i. In fact, by Lemma 7.2 and Proposition 7.1, for
every i, there exists h ∈ π1(N) and 1 ≤ j ≤ s such that gi = h∗(gj) and
Bi = h(Bj). However the action of h on Ñ is isometric, so to control the
energy necessary to generate χ̃2,k(gi) along T i

m it suffices for us to control
the energy necessary to generate χ̃2,k(gj), for j = 1, . . . , s, based on points
in Bj . This is possible as the Bj are compactly supported in Ñ . By tending
δ to zero we obtain a sequence of equibounded maps ṽm ∈ R∞,2(M, Ñ ),
converging in L2 to ũ. As in the simply connected case we can prove
that ṽm ∈ R2,∞(M,N) satisfy the 2-skeleton condition with respect to M
and Ñ . As a result, F ◦ ṽm ∈ R2,∞(M,N) will satisfy the same condition
with respect to M and N . This completes the proof of the theorem. �
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