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Abstract. We prove existence of infinitely many weakly harmonic maps
from a domain ofRn into S2 for non-constant smooth boundary data.

1 Introduction

Consider the Sobolev space:

H1(Ω,S2) = {u ∈ H1(Ω,R3) ; u(x) ∈ S2 a.e. onΩ}
whereΩ ⊂ R

n is a bounded open set andS2 is the 2-dimensional unit
sphere inR

3. For u ∈ H1(Ω,S2) the energyE(u) =
∫
Ω |∇u|2 is well

defined. We callu a weakly harmonic map if it is a critical point for the
functionalE, i.e. if and only if we have

d

dt
E

(
u+ tv
|u+ tv|

)
|t=0

= 0 for all v ∈ C∞
c (Ω,R3) .

In other words,u is weakly harmonic in the Sobolev spaceH1(Ω,S2) if it
satisfies the following equation in the sense of distributions:{−∆u = u|∇u|2 in Ω

u(x) ∈ S2 a.e.

Let ϕ : ∂Ω → S2 be a smooth map which has a regular extension into
Ω. The existence of a weakly harmonic map equal toϕ on the boundary
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can be easily proved by a straightforward minimizing argument. By the
way, the uniqueness and regularity questions for weakly harmonic maps in
H1

ϕ(Ω,S
2) have not the same answers as in the classic cases, i.e. when the

target manifold is an euclidean space.
In this paper we consider the question of uniqueness of such extensions.

In [10], R. Hardt, D. Kinderlehrer and F.H. Lin had proved the existence
of infinitely many weakly harmonic extensions to an axially symmetric
boundary condition inH1(B3, S2) whereB3 is the unit ball inR

3. The
method consists in constructing a non-axially symmetric harmonic extension
and then one obtains infinitely many different harmonic maps with the same
boundary data by rotating this extension around the symmetry axis.

Another method consists in finding new harmonic maps by defining
new functionals whose critical points are still weakly harmonic. This has
been done by F. Bethuel, H. Brezis and J.-M. Coron in [4] where they
introduced such functionals which they called “relaxed energies”. Using
these functionals they proved forn = 3 that if ϕ is not homotopic to a
constant or if

min
H1

ϕ(Ω,S2)
E(u) < inf

C∞
ϕ (Ω,S2)

E(u)

thenϕ admits infinitely many weakly harmonic extensions insideΩ. Using
the same gap condition, T. Isobe proved the corresponding result for the
casen ≥ 4 in [12], still using the relaxed energies whose definition was
extended to higher dimensions.

At last, using hisstrict dipole insertion lemma, proved in [14], T. Rivìere
showed that ifΩ is a regular bounded domain ofR

3, a non constant smooth
boundary dataϕ : ∂Ω → S2 admits always infinitely many weakly har-
monic extensions (Appeared in [15]). The method, first proposed by
F. Bethuel, H. Brezis and J.-M. Coron, consists in producing infinitely many
distinct weakly harmonic maps in an inductive process by minimizing the
relaxed energies.

The main difficulty in adapting the approach in [15] to higher dimensions
is first generalizing the concept of relaxed energies as appeared in [4] to
what we will call theF -energies in a suitable way and proving the desired
properties for these new energies. Another difficult step consists in finding
some equivalent construction in any dimensions of the insertion of 2 singular
points with the strict inequality like in [14] forn = 3. It appears that
([14], Lemma A.1) can be generalized (via some technical difficulties) by
inserting this time(n− 3)-dimensional singular spheres. Our main result is
the following

Theorem 1 LetΩ be a regular bounded domain inRn, n ≥ 3 , andϕ a
non-constant smooth map from∂Ω into S2. Thenϕ admits infinitely many
weakly harmonic extensions. 
�
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Remark 1This result is independent of the choice of the metric onS2 . For
the details compare with [15].

Remark 2It seems that the main difficulty to overcome in order to extend
the result forp-harmonic maps intoSp, using the same method, is to prove
the lower semi-continuity of the generalized relaxed energies which can be
defined also in these cases in a natural way.

The paper is organized as follows. In Sect. 2 we recall some elementary
facts needed for our work using concepts of Geometric Measure Theory. In
Sect. 3 we introduce theF -energies and discuss their characteristics. The
readers can refer to [9] for more elaborated discussion of these subjects.
Then in Sect. 4 we prove our main result using the strict insertion lemma
which we shall prove in the last part of the paper.

2 Preliminaries

LetΩ ⊂ R
n, n ≥ 3 , be a bounded open set and let

H1(Ω,S2) = {u ∈ H1(Ω,R3) ; u(x) ∈ S2 a.e. onΩ}
and

H1
ϕ(Ω,S

2) = {u ∈ H1(Ω,S2) ; u = ϕ on∂Ω}
whereϕ is a given boundary data. Foru ∈ H1

ϕ(Ω,S
2) the Dirichlet energy

is given byE(u) =
∫
Ω |∇u|2. We assume thatϕ is inC∞(∂Ω, S2) and can

be extended intoΩ by a smooth map.

2.1 The subspaceR∞
ϕ (Ω,S2)

Definition 1 We say thatu ∈ H1
ϕ(Ω,S

2) is in R∞
ϕ (Ω,S2) if u is smooth

except onB =
⋃m

i=1 σi ∪B0 , a compact subset ofΩ, whereHn−3(B0) =
0 and theσi , i = 1, · · · ,m are smooth embeddings of the unit disk of
dimensionn− 3. Moreover we assume that any two different faces ofB, σi
andσj , may meet only on their boundaries.

Remark 3In ([2], Theorem 2 bis ), F. Bethuel has proved thatR∞
ϕ (Ω,S2)

is dense inH1
ϕ(Ω,S

2) for the strong topology.

Definition 2 Letu ∈ H1
ϕ(Ω,S

2). We define the currentSu ∈ Dn−3(Ω) to
be the current defined by

Su(α) :=
∫
Ω
u∗ω ∧ dα ∀α ∈ Dn−3(Ω). (1)
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HereDk(Ω) is the set of smooth k-forms onΩ with compact support (See
[9], 2.2.3) andω is some 2-form onS2 for which

∫
S2 ω = 1.

Let ω1 andω2 be two such forms onS2. We haveω1 − ω2 = dβ where
β is some smooth 1-form onS2 extendable toR3. Letu ∈ H1

ϕ(Ω,S
2) and

consider a sequenceum ∈ C∞(Ω,R3) converging tou in H1. We have

u∗
m(dβ) = d (u∗

mβ)

and by passing to the limit, we observe that this holds true foru in the sense
of distributions. This proves the independence ofSu from the choice ofω
as we have:

d(u∗ω1) − d(u∗ω2) = du∗(dβ) = 0

in the sense of distributions. Now the existence of the integral (1) is a direct
consequence of the following inequality:

|u∗ω| ≤ 1
8π

|∇u|2 a.e. onΩ (2)

where4πω = ωV is the standard volume form ofS2.
We shall give a description ofSu for u ∈ R∞

ϕ (Ω,S2). Clearly if u is
smooth a standard operation on pull-back yields

d(u∗ω) = u∗(dω) = 0

and as a consequence we deduce foru ∈ R∞
ϕ (Ω,S2) that

sptSu ⊆ B.
Definition 3 Letu ∈ R∞

ϕ (Ω,S2) and letB =
⋃
σi ∪ B0 be the singular

set ofu. Suppose that eachσi is oriented by a smooth(n − 3)-vectorfield
�σi. For a ∈ σi let Na be the 3-dimensional plane orthogonal toσi at a.
Consider the 3-diskMa,δ = Bδ(a) ∩Na oriented by the 3-vector�Ma such
that �σi(a) ∧ �Ma = (−1)n�ξRn . Then the topological degree ofu on the 2
dimensional sphereΣa,δ = ∂Ma,δ is well defined and is independent of the
choice ofa for δ small enough. We call this integer the degree ofu on σi
and denote it by

degσiu .

Our first goal is to show that foru ∈ R∞
ϕ (Ω,S2) , Su is the integer

multiplicity rectifiable current
∑m

i=1(degσiu) τ(σi, 1, �σi). Recall that any
k-dimensional rectifiable subsetM of R

n considered with a multiplicityθ
and oriented by a unitk-vector fieldξ defines a rectifiable current as follows

τ(M, θ, ξ)(α) :=
∫

M
< ξ, α > θ dHk ∀α ∈ Dk(Rn).
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Lemma 1 Letω = 1
4πωV andu ∈ R∞

ϕ (Ω,S2). Then the(n−2)-vectorfield
�D(u) defined onΩ\B by the equation

< �D(u)(x), Ψ > ωRn := u∗ω(x) ∧ Ψ ∀Ψ ∈ Λn−2(Rn) (3)

is a simple(n − 2)-vectorfield tangent to the smooth manifoldu−1(y) for
all regular valuey = u(x) ∈ S2. Meanwhile

| �D(u)| = 1
4π

|J2u| a.e. onΩ. (4)


�
Remember that an element ofΛk(Rn) is calledsimpleif and only if it

equals the exterior product ofk vectors ofRn ([7], 1.6.1).

Proof. Write

u∗ω =
∑
i<j

uij dx
i ∧ dxj a.e. onΩ

anduij = 0 for i ≥ j. For almost allx ∈ Ω , u∗ω(x) is in Λ2(Rn). Using
(3) a short calculation shows that

�D(u)(x) =
∑
σ∈Sn

1
(n− 2)!

uσ(1),σ(2)
∂

∂xσ(3) ∧ · · · ∧ ∂

∂xσ(n)

and we get

�D(u)(x) ∧ �η =< �η, u∗ω(x) > �ξRn ∀�η ∈ Λ2(Rn). (5)

So if y ∈ S2 is a regular point foru we have�D(u)(x) �= 0 and if�v is any
vector tangent tou−1(y) atx by (5) we obtain

�D(u)(x) ∧ �v ∧ �w =< �v ∧ �w, u∗ω(x) > �ξRn ∀�w ∈ Λ1(Rn)

and sinceDu(x) · �v = 0

< �v ∧ �w, u∗ω(x) >=
1
4π
< Λ2(Du)(x) · (�v ∧ �w), ω(y) >

=
1
4π
< Du(x) · �v ∧Du(x) · �w, ω(y) >= 0

Therefore�D(u)(x)∧�v = 0 for any�v tangent tou−1(y) atx and as a result
�D(u)(x) is a simple(n − 2)-vector associated to tangent space ofu−1(y)
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atx (See [7], 1.6.1). Now using (5) and by duality we get (4) asω = 1
4πωV

and so

| �D(u)(x)| = |u∗ω(x)| = 1
4π

|Λ2(Du)(x)|

=
1
4π

|J2u(x)| a.e. onΩ. 
�

For anyy ∈ S2, regular value ofu ∈ R∞
ϕ (Ω,S2), we define the current

Tu
y := τ

(
u−1(y), 1,

�D(u)

| �D(u)|

)
. (6)

Proposition 1 Consideru ∈ R∞
ϕ (Ω,S2) andTu

y as in(6), then for almost
all y ∈ S2 ,Tu

y is a rectifiable current inR
n with support inΩ and

∂Tu
y = Su + τ

(
ϕ−1(y), 1,

�D(ϕ)

| �D(ϕ)|

)
(7)

where the(n− 3)-vectorfield�D(ϕ) on∂Ω is defined by the equation

< �D(ϕ)(x), Ψ > ωEx := ϕ∗ω(x) ∧ Ψ ∀Ψ ∈ Λn−3(Ex)

whereEx = Tx(∂Ω) is the tangent space to∂Ω at x andωEx is its unit
volume form. 
�
Proof. First observe that by Sard’s theorem, for almost ally ∈ S2, u−1(y)
is a countable union of smooth submanifolds supported inΩ. Moreover by

Lemma 1,
�D(u)

| �D(u)| is associated to the tangent space ofu−1(y). So by co-area

formula we have∫
S2

M(Tu
y) dy =

∫
Ω

|J2u| ≤ 1
2

∫
Ω

|∇u|2

and we deduce thatM(Tu
y) < +∞ for almost ally, i.e.Tu

y is rectifiable.
The claim about∂Tu

y is proved in 4 steps:

(i) We prove that∂Tu
y is a flat chain.

(ii) We give an expression for∂Tu
y of the form

∑
i

riy τ(σi, 1, �σi) + τ

(
ϕ−1(y), 1,

�D(ϕ)

| �D(ϕ)|

)

using the constancy theorem.
(iii) We prove thatriy = degσiu .
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(iv) At last (7) would be proved using the definition ofSu and the co-area
formula.

Step (i): Sinceu is smooth onΩ\B we observe that

spt(∂Tu
y) ⊆ ∂Ω ∪B (8)

if y is a regular value foru. We know thatu is smooth near∂Ω and we have
u−1(y) ∩ ∂Ω = ϕ−1(y) , �ξRn = (−1)n−1�ξEx ∧ �n for all x ∈ ∂Ω. Using
(5) for �D(u) and �D(ϕ) we get that

�D(u) = (−1)n−1 �D(ϕ) ∧ �next for regular points x ∈ ∂Ω
when�next is the outward unit tangent vector tou−1(y) atx. So considering
the rules of orientation of manifolds we get

∂Tu
y�∂Ω = τ

(
ϕ−1(y), 1,

�D(ϕ)

| �D(ϕ)|

)
(9)

which is a rectifiable current for the regular values ofu andϕ.

For proving the claim we putSy = ∂Tu
y − τ

(
ϕ−1(y), 1,

�D(ϕ)
| �D(ϕ)|

)
and

consider the set
Bε = {x| d(x,B) < ε}

theε-neighborhood ofB in Ω. By (8) and (9) we get

∂(Tu
y�Bε) = Tu

y�∂Bε + Sy , sptSy ⊆ B. (10)

Sinceu is smooth on∂Bε , Tu
y�∂Bε is an (n − 3)-dimensional normal

current. Now using the co-area formula we get∫
S2

M(Tu
y�Bε) dy =

∫
Bε

|J2u| ≤ 1
2

∫
Bε

|∇u|2 → 0 as ε→ 0.

So for almost ally ∈ S2 , M(Tu
y�Bε) → 0. By (10) we deduce thatSy is

a flat chain as it is a flat-norm limit of normal currentsTu
y�∂Bε .

Step (ii):Sy is a flat chain inΩ without boundary. By the Constancy The-
orem ([9], 5.3.1, Theorem 3) applied successively to theσi, there exist real
numbersriy such that

spt(Sy − riyτ(σi, 1, �σi)) ⊆ Ω\σi i = 1, · · · ,m
and as a result

spt

(
Sy −

m∑
i=1

riyτ(σi, 1, �σi)

)
⊆ Ω\

m⋃
i=1

σi .
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MeanwhileB =
⋃

i σi ∪B0 whereHn−3(B0) = 0. So since the support of
Sy lies in B,Sy −∑m

i=1 r
i
yτ(σi, 1, �σi) is an(n− 3)-dimensional flat chain

supported inB0, therefore

Sy =
m∑
i=1

riyτ(σi, 1, �σi)

and so

∂Tu
y =

∑
i

riy τ(σi, 1, �σi) + τ

(
ϕ−1(y), 1,

�D(ϕ)

| �D(ϕ)|

)
. (11)

Step (iii): We begin this part by proving the following lemma.

Lemma 2 LetM be a 3-dimensional smooth manifold supported inΩ ori-
ented by�M a smooth 3-vectorfield. LetM = τ(M, 1, �M) andΣ = ∂M.
Then for almost ally ∈ S2,

k(∂Tu
y ,M) = (−1)n

∫
Σ
u∗ω

wherek(S,T) is the kronecker index ofSandT as defined in ([9], vol. 1,
5.3.4). 
�
Proof. For almost ally ∈ S2 regular value for (u|Σ) (11) is valid andΣ
transversally intersectsu−1(y) at each point of their intersection. So we
have: ∫

Σ
u∗ω =

∑
x∈Σ∩u−1(y)

< �Σ(x),
u∗ω(x)
|u∗ω(x)| >= k(Tu

y , Σ) (12)

Consider the translationτa : R
n → R

n, τa(x) = x + a. Considering the
definition of the kronecker index and ([9], 5.3.4, Theorem 2) we observe
that there existsa small enough such that

(i) spt τa#Σ ⊂ Ω\B , sptτa#M ⊂ Ω,
(ii) Tu

y ∩ τa#Σ , Tu
y ∩ τa#M and∂Tu

y ∩ τa#M exist,

(iii) k(Tu
y , Σ) = k(Tu

y , τ
a
#Σ) , k(∂Tu

y ,M) = k(∂Tu
y , τ

a
#M) and

(iv) ∂(Tu
y ∩ τa#M) = ∂Tu

y ∩ τa#M + (−1)n−3Tu
y ∩ τa#Σ.

Therefore by (12)

k(∂Tu
y ,M) = k(∂Tu

y , τ
a
#M) = (∂Tu

y ∩ τa#M)(1)
= (−1)n(Tu

y ∩ τa#Σ)(1) = (−1)nk(Ty, τ
a
#Σ)

= (−1)nk(Tu
y , Σ) = (−1)n

∫
Σ
u∗ω.
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which proves the lemma. 
�
Now takeMa,δ = τ(Ma,δ, 1, �Ma,δ) as in the definition 3. Applying

Lemma 2 and (12) to Ma,δ we get:

degσiu =
∫
Σa,δ

u∗ω = (−1)nk(∂Tu
y ,Ma,δ) = riy . (13)

Step (iv): Letα ∈ Dn−3(Ω). By the co-area formula and (4) we get:∫
Ω
u∗ω ∧ dα =

1
4π

∫
S2
dy

∫
u−1(y)

u∗ω ∧ dα
|u∗ω|

=
1
4π

∫
S2
dy

∫
u−1(y)

<
�D(u)

| �D(u)| , dα > dHn−2

=
1
4π

∫
S2

Tu
y(dα) dy =

1
4π

∫
S2
∂Tu

y(α) dy

and sinceα|∂Ω = 0 using (11) and (13) we obtain:

∫
Ω
u∗ω ∧ dα =

1
4π

∫
S2
dy

m∑
i=1

(degσiu)τ(σi, 1, �σi)(α)

=
m∑
i=1

(degσiu) τ(σi, 1, �σi)(α)

(14)

which completes the proof of Proposition 1 regarding the definition ofSu

and the formula for∂Tu
y in (11). 
�

Corollary 1 Let u ∈ R∞
ϕ (Ω,S2) andB =

⋃
i σi ∪ Bo its singular set.

Then
Su =

∑
i

(degσiu)τ(σi, 1, �σi).


�
Proof. Refer to the relation (14) in the proof of Proposition 1. 
�

3 TheF -energy onH1
ϕ(Ω, S2)

In this section we define for anyv ∈ H1
ϕ(Ω,S

2) a functionalFv onH1
ϕ

(Ω,S2) which has two interesting properties. First, it is lower semi-
continuous and second, its critical points are also the critical points of the
energyE, i.e. the critical points ofF , in particular its minimizers, would be
weakly harmonic maps. In fact this “F -energy” is a natural generalization of
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the “relaxed energy” in dimension 3 introduced in [4], except that in higher
dimensions the functionalF may not be a relaxed energy forH1

ϕ(Ω,S
2):

i.e. there exist cases where

inf
H1

ϕ(Ω,S2)
F < min

C∞
ϕ (Ω,S2)

E ,

(See [13]).

Definition 4 Letu, v be two maps inH1
ϕ(Ω,S

2). We define the connection
betweenu andv to be

L(u, v) = sup
ψ ∈ Ω∞

n−3(Ω)
|dψ|∞ ≤ 1

{∫
Ω
u∗ω ∧ dψ −

∫
Ω
v∗ω ∧ dψ

}
(15)

whereω is any 2-form onS2 with
∫
S2 ω = 1. We will often takeω = 1

4πωV
which is more suitable for computations.

Remark 4We recall that the mass of currents is in fact the dual of the comass
norm of differential forms (See [7], 4.1.7). So, from Geometric Measure
Theory point of view, it would be more natural to use the comass norm
of dψ instead of its euclidean norm in the definition ofL. Meanwhile the
euclidean norm is preferred for the relative simplicity of the proof of lower
semi-continuity ofFv .

Proposition 2 We have the following inequality:

L(u, v) ≤ C‖∇u− ∇v‖2(‖∇u‖2 + ‖∇v‖2) ∀u, v ∈ H1
ϕ(Ω,S

2). (16)


�
Proof. We write

dψ =
∑

1≤i3<i4<···<in≤n

ψi3i4···indx
i3 ∧ dxi4 ∧ · · · ∧ dxin

and we have ∑
i3<i4<···<in

|ψi3i4···in |2 = |dψ|2 ≤ 1.

Now by simple calculations we obtain:

< �ξRn , u∗ω∧dψ >= 1
8π

∑
i3 < i4 < · · · < in

{i1, · · · , in} = {1, · · · , n}

u ·(uxi1 ∧uxi2 )ψi3i4···in
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and the proposition is proved using the same method used in [4],
Theorem 3. 
�

Now letu ∈ H1
ϕ(Ω,S

2) and foru0 ∈ C∞
c (Ω,S2) consider the variation

u(t) = u+tu0
|u+tu0| . As a consequence fort small enoughu(t) ∈ H1

ϕ(Ω,S
2)

and we have:

Lemma 3 For all u, v ∈ H1
ϕ(Ω,S

2) and fort small enoughL(u(t), v) =
L(u, v). 
�
Proof. Pay attention that ifun → u inH1 then fort small enough we have
un(t) → u(t) in H1. So in the view of the Proposition 2 and by using the
fact thatR∞

ϕ (Ω,S2) is dense inH1
ϕ(Ω,S

2) (See Remark 3), it suffices for
us to prove this lemma foru, v ∈ R∞

ϕ (Ω,S2). For suchu andv we get by
the co-area formula and Proposition 1:∫

Ω
u∗ω ∧ dψ −

∫
Ω
v∗ω ∧ dψ =

1
4π

∫
S2
(Tu

y − Tv
y)(dψ) dy

= (Su − Sv)(ψ). (17)

Meanwhile foru ∈ R∞
ϕ (Ω,S2), using the corollary 1, we haveSu =

Su(t) asu andu(t) have the same singular set and the same degrees on its
components. By (17) we get:

L(u(t), v) = sup
|dψ|∞≤1

(
Su(t) − Sv

)
(ψ)

= sup
|dψ|∞≤1

(Su − Sv) (ψ) = L(u, v)

and the lemma is proved. 
�
Proposition 3 For fixedv ∈ H1

ϕ(Ω,S
2) let

Fv(u) := E(u) + 8πL(u, v).

ThenFv is a lower semi-continous functional onH1
ϕ(Ω,S

2) and its critical
points are weakly harmonic maps. 
�
Remark 5T. Isobe has proved the lower semi-continuity of the functionals

Fψ,λ(u) = E(u) + 8πλ
{∫

Ω
u∗ω ∧ dψ −

∫
∂Ω
ϕ∗ω ∧ ψ

}
for λ < C(n), n ≥ 4 (See [12]). But what we need here is the same result
for λ = 1 for which we have to prefer another argument.

Proof. Again as in the Proposition 2, the proof of lower semi-continuity of
Fv is the same as the proof of lower semi-continuity of the relaxed energy
in [4]. Using Lemma 3 we obtain

d

dt
Fv(u(t))|t=0 =

d

dt
E(u(t))|t=0 + 8π

d

dt
L(u(t), v)|t=0 =

d

dt
E(u(t))|t=0

so as a result the critical points ofFv are those ofE. 
�
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4 The existence of infinitely many weakly harmonic maps
in H1

ϕ(Ω, S2) for non-constant boundary datas

We shall state here the main result of the paper.

Theorem 1 LetΩ be a regular bounded domain inRn, n ≥ 3 , andϕ a
non-constant smooth map from∂Ω to S2. Thenϕ admits infinitely many
weakly harmonic extensions. 
�

For proving this theorem we apply a method proposed by F. Bethuel,
H. Brezis and J.-M. Coron which uses theF -energy as an efficient tool for
finding the new weakly harmonic maps and a technical lemma which we
shall prove in the following section.

Lemma 4 LetΩ be a bounded regular domain inRn andu a regular non-
constant map fromΩ to S2. Letx0 be a point ofΩ for which∇u(x0) �= 0.
Then for everyρ > 0 there exists a mapv ∈ H1(Ω,S2) and0 < δ < ρ
such that

(i) v=u onΩ\Bρ(x0)
(ii) Sv = τ(σ, 1, �σ)
(iii) E(v) < E(u) + 8πωn−2δ

n−2 = E(u) + 8πL(v, u)

whereσ is an(n− 3)-dimensional sphere of centerx0 and radiusδ andωk
is the volume of the unitk-dimensional disk. 
�

This lemma, called the strict insertion of singularities, was firstly proved
for the casen = 3 by T. Rivière in [14]. The computations used rely on the
previous computations for inserting coverings ofS2 in dimension 2 (See
[5]). The axially symmetric version of it was proved in [11].

Proof of Theorem 1. Two situations may take place:

(1) There are infinitely many distinct minimizers forE in H1
ϕ(Ω,S

2) and
so the problem is solved.

(2) There are only a finite number of minimizers forE onH1
ϕ(Ω,S

2).

In this case letw1, · · · , wm be the minimizing maps. By the partial regu-
larity theory of [16] and considering the fact thatϕ is not constant we deduce
the existence ofΩ1, an open subset ofΩ, on whichw1 is smooth and some
x0 ∈ Ω1 for which∇w1(x0) �= 0. For someρ > 0 which will be fixed later
we apply the Lemma 4 tow1 onΩ1 and name the transformed mapv1. So
we have

E(v1) < E(w1) + 8πL(v1, w1). (18)

Now suppose thatu1 is a minimizing map forFv1 onH1
ϕ(Ω,S

2). By
Proposition 4 such maps exist and are weakly harmonic. We shall prove that
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for ρ sufficiently smallu1 is different from all thewi. We distinguish two
cases:

(a)L(wk, w1) = 0: By (18) we obtain

Fv1(u1) ≤ Fv1(v1) = E(v1) < E(w1) + 8πL(v1, w1). (19)

Moreover subadditionality ofL gives

|L(v1, w1) − L(v1, wk)| ≤ L(wk, w1) = 0, (20)

soL(v1, w1) = L(v1, wk) and using the fact thatE(w1) = E(wk) , (19)
implies

Fv1(u1) < Fv1(wk).
This strict inequality proves naturally thatu1 �= wk whenL(w1, wk) = 0.

(b)L(wk, w1) > 0: We have

L(wk, v1) + L(v1, w1) ≥ L(wk, w1), (21)

meanwhile by the Lemma 4

L(v1, w1) = ωn−2δ
n−2 < ωn−2ρ

n−2, (22)

thus

Fv1(wk) = E(wk) + 8πL(wk, v1)
≥ E(w1) + 8π(L(wk, w1) − ωn−2ρ

n−2). (23)

Now it is sufficient to chooseρ > 0 such that for allwk verifying
L(wk, w1) > 0 we have the inequality

0 < ωn−2ρ
n−2 <

L(wk, w1)
2

, (24)

then by (22) we haveL(wk, w1) − ωn−2ρ
n−2 > ωn−2ρ

n−2 > L(v1, w1)
and this, added to (23) implies:

Fv1(wk) > Fv1(w1) ≥ Fv1(u1),

which combined with part (a) proves thatu1 is different from all thewk .
We construct by induction a sequenceuj of distinct weakly harmonic

maps inH1
ϕ(Ω,S

2) which are also different from thewi, using the same
method. Chooseρj+1 such that


0 < ωn−2ρ
n−2
j+1 < Min

{
L(wk, w1)

2
;

for k verifying L(wk, w1) > 0
}

and

0 < ωn−2ρ
n−2
j+1 < Min

{
E(ui) − E(w1)

8π
; i = 1, · · · , j

}
(25)
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Let uj+1 be a minimizer ofFvj+1 whenvj+1 is the transformed map ofw1
onBρj+1(x0) as in Lemma 4. Again the first inequality in (25) assures that
uj+1 is distinct from thewi. For seeing thatuj+1 �= ui for i ≤ j , using the
strict inequality of Lemma 4 we observe that

Fvj+1(uj+1) ≤ Fvj+1(vj+1) = E(vj+1) < E(w1) + 8πωn−2ρ
n−2
j+1 . (26)

Moreover from (25) we have

8πωn−2ρ
n−2
j+1 < E(ui) − E(w1). (27)

Thus combining (26) and (27) imply thatE(uj+1) ≤ Fvj+1(uj+1) < E(ui).
This yields thatuj+1 �= ui for i ≤ j and completes the proof of the
theorem. 
�

5 The strict insertion of a singular sphere

We would follow the method used by T. Rivière in [14] for the casen = 3.

5.1 Notations

We replacex0 by 0 using a suitable translation inRn. We choose also an
orthonormal basis(�i,�j,�k1, · · · ,�kn−2) for R

n such that

ux(0) �= 0, ux(0) · uy(0) = 0. (28)

(See [5]). Let(x, y, z1, · · · , zn−2) be the coordinates in the new basis. We
introduce also the polar coordinates(r, θ) , (R, θ1, · · · , θn−4, ϕ) as follows



x = r cos θ
y = r sin θ
z1 = R cos θ1
z2 = R sin θ1 cos θ2
.
.
.
zn−3 = R sin θ1 · · · sin θn−4 cosϕ
zn−2 = R sin θ1 · · · sin θn−4 sinϕ

(29)

where0 ≤ θi ≤ π , 0 ≤ ϕ ≤ 2π and|z| = R for z = (z1, · · · , zn−2).
Now for δ sufficiently small andR ∈ [0, δ + δ2] we define two unit

vector fields

I(z) =
ux(0, 0, z)
|ux(0, 0, z)| , K(z) = u(0, 0, z). (30)
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Sinceu takes its values inS2, I andK are orthogonal. Leta = |ux(0)| and
b = |uy(0)|. We defineJ(z) to be a smooth vectorfield such that(I, J,K)
form an orthonormal basis. We verify then

ux(0, 0, z) = (a+O(R))I(z)
uy(0, 0, z) = O(R)I(z) + (b+O(R))J(z). (31)

5.2 Sketch of the proof

We shall transformu in the region

Cδ = {(x, y, z) ∈ Ω | 0 ≤ R ≤ δ + δ2, 0 ≤ r ≤ 2δ2}.

For δ sufficiently small , the transformed mapv would be singular exactly
on the(n− 3)-dimensional sphereσ = {(0, 0, z); R = δ} and will satisfy

degσv = 1, E(v) < E(u) + 8πωn−2δ
n−2. (32)

For this aim we define the mapuδ as follows

(a) u = uδ outsideCδ

(b) In the region

cδ = {(x, y, z) |R < δ − δ2, 0 ≤ r ≤ 2δ2}

uδ would be an interpolation betweenu ousidecδ and a conformal map
on each disk centered at(0, 0, z) and of radiusδ2 in the region

cδ1 = {(x, y, z) |R < δ − δ2 , 0 ≤ r ≤ δ2}

exactly as it is described by T. Rivière in [14], following the method of
H. Brezis and J.-M. Coron in [5] .

(c) For the regioñcδ = Cδ\cδ , uδ will be the conjugation of the value of
uδ on∂c̃δ with the projectionΠ : c̃δ → ∂c̃δ which is defined as follows
: For p ∈ c̃δ , Π(p) is the intersection with∂c̃δ of the line orthogonal
to σ which passes throughp.

It will be showed thatv = uδ for δ small enough is a desired map. In
the last step we will prove thatL(u, v) = ωn−2δ

n−2, the volume of the
(n− 2)-disk of the boundaryσ.
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5.3 The construction ofuδ in cδ

For (x, y, z) ∈ cδ we define

(i) If r < δ2:

uδ =
2λ

λ2 + r2
(xI(z) + yJ(z) − λK(z)) +K(z) (33)

whereλ = cδ4 andc will be fixed later.

(ii) If δ2 ≤ r ≤ 2δ2:

uδ = (A1r +B1)I(z) + (A2r +B2)J(z)

+
√

1 − (A1r +B1)2 − (A2r +B2)2K(z) (34)

whereAi andBi depend only onz, θ, r as follows:


2δ2Ai +Bi = ui(2δ2 cos θ, 2δ2 sin θ, z)

for i = 1, 2 (ui is thei-th coordinate ofu in (I(z), J(z),K(z))

δ2A1 +B1 =
2λδ2

λ2 + δ4
cos θ

δ2A2 +B2 =
2λδ2

λ2 + δ4
sin θ.

(35)

5.3.1 The estimates forE(uδ) in cδ2 = cδ\cδ1
Following the same computations as in [5] or [14] we have the following
estimates oncδ2 for fixedz:


∫
δ2≤r≤2δ2

|∇xyu
δ(x, y, z)|2 dxdy

= 4πδ4(a2 + b2 − 2c2 + (a2 + b2 + 8c2 − 4ac− 4bc) ln 2) +O(δ5).

∣∣∣∣∂uδ∂zi (x, y, z)
∣∣∣∣ =

∣∣∣∣ ∂u∂zi (0, 0, z)
∣∣∣∣+O(δ2) for i = 1, · · · , n− 2.

|∇uδ| ≤ C for C > 0 independent ofδ.
(36)
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Note that by∇xyu we mean the matrix of first partial derivatives ofu in x
and iny. As a result we have the following estimate for the energy oncδ2:∫

cδ
2

|∇uδ|2 = 4πωn−2δ
n+2

×(a2 + b2 − 2c2 + (a2 + b2 + 8c2 − 4ac− 4bc) ln 2)

+π((2δ)2 − (δ2))
∫

0≤R≤δ−δ2
|∇zu(0, 0, z)|2 dz

+O(δn+3). (37)

5.3.2 The estimates forE(uδ) in cδ1

Firstly for a fixedz, uδ is a conformal diffeomorphism from the diskB2

((0, 0, z), δ2) into S2 and we get:∫
r≤δ2

|∇xyu
δ(x, y, z)|2 dxdy = 2Area(uδ(B2((0, 0, z), δ2), z))

= 8π − 8πc2δ4 +O(δ5).

(38)

and by integration onz we obtain:∫
cδ
1

|∇xyu
δ(x, y, z)|2 dxdydz1 · · · dzn−2

=
ωn−2

(n− 2)

∫ δ−δ2

0
Rn−3dR

∫
r≤δ2

|∇xyu
δ(x, y, z)|2 dxdy

= 8πωn−2(δ − δ2)n−2 − 8πωn−2c
2δn+2 +O(δn+3). (39)

Meanwhile we estimate thez-derivatives ofuδ in cδ1. Firstly we have

∂uδ

∂zi
(x, y, z) =

2λ
λ2 + r2

(
x
dI

dzi
+ y

dJ

dzi
− λdK

dzi

)
+
dK

dzi

for i = 1, · · · , n− 2. (40)

We estimate∂u
δ

∂zi
(x, y, z) in two regions:

(a) r ≤ δ3: Using (40) we observe that for0 ≤ r ≤ δ2:

|∇ziu
δ| ≤

∣∣∣∣dKdzi
∣∣∣∣+ 2λ

(λ2 + r2)
1
2

≤ C independent ofδ (41)
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and as a result ∫
r≤δ3

|∇zu
δ|2dxdy = O(δ6), (42)

which implies ∫
cδ
1

|∇zu
δ|2 = O(δn+4). (43)

(b) δ3 ≤ r ≤ δ2: We have∣∣∣∣ 2λ
λ2 + r2

(x
dI

dzi
+ y

dJ

dzi
)
∣∣∣∣ ≤ 2λr

λ2 + r2
≤ Cλ

r
= O(δ). (44)

So using (40)

∂uδ

∂zi
(x, y, z) =

(
r2 − λ2

r2 + λ2

)
∂u

∂zi
(0, 0, z) +O(δ) for δ3 ≤ r ≤ δ2,

and we get

∫
δ3≤r≤δ2

|∇zu
δ|2 dxdy =

(
2π
∫ δ2

δ3

(
r2 − λ2

r2 + λ2

)2

r dr

)

×|∇zu(0, 0, z)|2 +O(δ5)

= πδ4|∇zu(0, 0, z)|2 +O(δ5).

This last estimate combined with (43) yields

∫
cδ
1

|∇zu
δ|2

= πδ4
∫

0≤R≤δ−δ2
|∇zu(0, 0, z)|2 dz1 · · · dzn−2 +O(δn+3) .(45)

At last combining (39) and (45) we obtain:

∫
cδ
1

|∇uδ|2 = 8πωn−2(δ − δ2)n−2 − 8πωn−2c
2δn+2

+πδ4
∫

0≤R≤δ−δ2
|∇zu(0, 0, z)|2 dz +O(δn+3) . (46)
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5.3.3 The evaluation ofE(uδ) on c̃δ

As briefly mentioned above in the the sketch of the proof,uδ in the region
c̃δ is defined as follows: We define the projectionh : c̃δ → σ by

h(x, y, z1, z2, · · · , zn−2) = (0, 0,
δz1
R
, · · · , δzn−2

R
) (47)

Then the projectionΠ , defined on

c̃δ = {(x, y, z) |δ − δ2 ≤ R ≤ δ + δ2 , 0 ≤ r ≤ δ2}
sends each pointp to the intersection between∂c̃δ and the line passing
throughp andh(p). We take

uδ =
(
uδ|∂c̃δ

)
◦Π.

Pay attention that the pointsp andΠ(p) lie in the3-plane orthogonal toσ
ath(p).

Using the co-area formula we have∫
c̃δ

|∇uδ|2 =
∫
σ
dHn−3

∫
h−1(w)

|∇uδ|2
|Jn−3h| dH

3 (48)

Moreover|Jn−3h| =
(
δ
R

)n−3
and

h−1(w) = {(x, y,R, θ1, · · · , θn−4, ϕ)
∈ c̃δ | δ − δ2 ≤ R ≤ δ + δ2 , 0 ≤ r ≤ 2δ2 ,
θi = const. for i = 1, · · · , n− 4, andϕ = const. }

is a cylinder of the height2δ2, of radius 2δ2 and of centerw ∈ σ. We now
estimate the value of

∫
h−1(w)R

n−3|∇uδ|2 dx dy dR.

We writeh−1(w) as the union of two separate regionsGw andHw:

(1) Gw = Π−1(∂cδ1 ∩ h−1(w)) is the little 3-cone of vertexw, lying in
the plane orthogonal toσ at w, whose end is the diskDδ2 of center
(0, 0, δ − δ2, θw1 , · · · , θwn−4, ϕ

w) and of radiusδ2. Pay attention that on
this diskuδ is the conformal map defined in (33).

(2) Hw is the complementar ofGw in h−1(w): i.e.Hw = Π−1(∂c̃δ\∂cδ1 ∩
h−1(w)).

See Fig. 1 and Fig. 2 to visualize these regions forn = 4. For estimating
|∇uδ| onGw we proceed by changing the coordinates. LetR′ be the distance
of the pointp = (x, y, z1, · · · , zn−2) ∈ Gw fromw, the vertex of the cone,
and letx′ andy′ be the two first coordinates ofΠ(p) in Dδ2 (See Fig. 2).
We have
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Fig. 1

Fig. 2
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x′ =
δ2x

δ −R

y′ =
δ2y

δ −R

R′ =
√
r2 + (δ −R)2

θi = θi , ϕ = ϕ

and




x =
x′R′√
δ4 + r′2

y =
y′R′√
δ4 + r′2

δ −R =
δ2R′√
δ4 + r′2

(49)

Now uδ is constant on the rays passing byw, so we get

uδ(x′, y′, R′, θ1, · · · , θn−4, ϕ)

= uδ(x′, y′,
√
δ4 + r′2, θ1, · · · , θn−4, ϕ) (50)

i.e.
∂uδ

∂R′ = 0. Also by a simple calculation of the derivatives using (49) we

have for the point(x, y, z) ∈ Gw:




∂uδ

∂x
=

(√
δ4 + r′2

R′

)
∂uδ

∂x′ (x
′, y′,

√
δ4 + r′2)

∂uδ

∂y
=

(√
δ4 + r′2

R′

)
∂uδ

∂y′ (x
′, y′,

√
δ4 + r′2)

∂uδ

∂R
=

(
x′
√
δ4 + r′2

δ2R′

)
∂uδ

∂x′ (x
′, y′,

√
δ4 + r′2)

+

(
y′
√
δ4 + r′2

δ2R′

)
∂uδ

∂y′ (x
′, y′,

√
δ4 + r′2).

(51)

and in the same line by calculating the Jacobian of the new coordinates we
have:

dx dy dR =
δ2R′2

(δ4 + r′2)
3
2
dx′dy′dR′. (52)

Using (29) and doing the same work, we get:

|∇uδ|2 =
∣∣∣∣∂uδ∂x

∣∣∣∣
2

+
∣∣∣∣∂uδ∂y

∣∣∣∣
2

+
∣∣∣∣∂uδ∂R

∣∣∣∣
2

+ I (53)
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where

I =
1
R2

(∣∣∣∣∂uδ∂θ1

∣∣∣∣
2

+
1

sin2 θ1

∣∣∣∣∂uδ∂θ2

∣∣∣∣
2

+ · · ·

+
1

sin2 θ1 sin2 θ2 · · · sin2θn−4

∣∣∣∣∂uδ∂ϕ
∣∣∣∣
2
)
.

Using (50) and applying (41) and (53) to the points ofDδ2 we obtain

I(x′, y′, R′) =
(δ − δ2)2
R2 I(x′, y′,

√
δ4 + r′2)

≤ (δ − δ2)2
R2

∣∣∣∇zu
δ(x′, y′,

√
δ4 + r′2)

∣∣∣2
≤ C (δ − δ2)2

R2 (54)

Therefore by integrating directly over the coneGw we deduce from (54):∫
Gw

Rn−3I dx dy dR = O(δn+3). (55)

Furthermore considering (49), (51), (52) and (53) we estimate the integral

J =
∫
Gw

Rn−3(|∇uδ|2 − I)

as follows

J =
∫
Gw

Rn−3

(∣∣∣∣∂uδ∂x
∣∣∣∣
2

+
∣∣∣∣∂uδ∂y

∣∣∣∣
2

+
∣∣∣∣∂uδ∂R

∣∣∣∣
2
)
dx dy dR

=
∫
Dδ2

dx′ dy′
∫ √

δ4+r′2

0
Rn−3 δ2R′2

(δ4 + r′2)
3
2

×
[
δ4 + r′2

R′2
∣∣∣∇x′y′uδ(x′, y′,

√
δ4 + r′2)

∣∣∣2

+

(
δ4 + r′2

δ4R′2

)(
x′
∣∣∣∣∂uδ∂x′

∣∣∣∣+ y′
∣∣∣∣∂uδ∂y′

∣∣∣∣
)2
]
dR′

=
∫
Dδ2

δ2√
δ4 + r′2

∣∣∣∇x′y′uδ
∣∣∣2 ∫ δ

−δ2

√
δ4 + r′2

δ2
Rn−3 dR

+
∫
Dδ2

dx′ dy′ 1

δ2
√
δ4 + r′2

(
x′
∣∣∣∣∂uδ∂x′

∣∣∣∣+ y′
∣∣∣∣∂uδ∂y′

∣∣∣∣
)2

×
∫ δ

δ−δ2

√
δ4 + r′2

δ2
Rn−3 dR. (56)
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Using the inequality

|∇xyu
δ|2 ≤ C δ8

(δ8 + r2)2
on Dδ2 (57)

which is established in [5] we obtain

∫
Dδ2

dx′ dy′ 1

δ2
√
δ4 + r′2

(
x′
∣∣∣∣∂uδ∂x′

∣∣∣∣+ y′
∣∣∣∣∂uδ∂y′

∣∣∣∣
)2

×
∫ δ

δ−δ2

√
δ4 + r′2

δ2
Rn−3 dR

≤ C
∫ δ2

0
δn+3 r3

(δ8 + r2)2
dr = O(δn+3 ln(1/δ)). (58)

And combining (38), (53), (55), (56) and (58), finally we get:∫
Gw

Rn−3|∇uδ|2 =
8π
n− 2

(δn−2 − (δ − δ2)n−2)

− 8π
n− 2

c2δn+2 +O(δn+3 ln(1/δ)). (59)

Now, using the estimates in (36) and the fact thatuδ = u on ∂c̃δ\∂cδ we
observe that|∇uδ| is bounded on∂Hw and therefore following the same
method as the one used forGw we get∫

Hw

Rn−3|∇uδ|2 = O(δn+3). (60)

which conjugated with (48) and (59) yields∫
c̃δ

|∇uδ|2 = 8πωn−2(δn−2 − (δ − δ2)n−2)

−8πωn−2c
2δn+2 +O(δn+3 ln(1/δ)). (61)

5.3.4 The estimate for the energy ofu in Cδ

Similarly as in [14] we have the following estimate:∫
Cδ

|∇u|2 = 4πωn−2δ
n+2(a2 + b2)

+4πδ4
∫

0≤R≤δ−δ2
|∇zu(0, 0, z)|2dz +O(δn+3). (62)
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5.4 The end of proof of Lemma 4

Conjugating (37), (46) ,(61) and (62) we obtain:∫
Ω

|∇uδ|2 = 8πωn−2δ
n−2

−4πωn−2δ
n+2(4c2 − (a2 + b2 + 8c2 − 4ac− 4bc) ln 2)

+O(δn+3 ln(1/δ)) (63)

and by choosing a suitablec such that

4c2 − (a2 + b2 + 8c2 − 4ac− 4bc) ln 2 > 0

we can be sure that forδ small enoughv = uδ would satisfy the strict
inequality (32). For example putc = max

{
a
2 ,

b
2

}
. It is easy to verify that

the degree ofv on its only singular set, i.e.σ = {(0, 0, z) |R = δ} is one.
By the way as in (17):

L(v, u) = sup
ψ ∈ Ω∞

n−3(Ω)
|dψ|∞ ≤ 1

{∫
Ω
v∗ω ∧ dψ −

∫
Ω
u∗ω ∧ dψ

}

= sup
ψ ∈ Ω∞

n−3(Ω)
|dψ|∞ ≤ 1

Sv(ψ)
(64)

asSu = 0. Meanwhile using the corollary 1:

|Sv(ψ)| = |τ(σ, 1, �σ)(ψ)| = |T(dψ)| ≤ M(T) (65)

for every currentTwhich takesσ as its boundary, using the fact that|dψ|∞ ≤
1. PuttingT = T0 = τ(Bδ, 1, �Bδ)whereBδ is the(n−2)-ball of the center
0 and of radiusδ , we obtain combining (64) and (65):

L(v, u) ≤ ωn−2δ
n−2. (66)

Now takeψ0 = z1 ∧dz2 ∧· · ·∧dzn−2. A simple observation shows that
T0(dψ0) = M(T0) = ωn−2δ

n−2, so again using (64) and (65) we obtain
easily that

L(v, u) ≥ ωn−2δ
n−2

which completes the proof regarding (66). 
�
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