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1. Introduction

Imagine an airplane wing manufactured in a hyperbolic universe and imported into our Eu-
clidean space. The incompatibility of the two geometries would be an obstacle for the relative
ideal hyperbolic distances in the wing to be realized in the ambient Euclidean space. As a con-
sequence, the wing would take on a deformed shape and be subject to internal stresses, making
it not suitable for flying. This scenario, though imaginary, describes an everyday phenomenon
known as prestrain in nonlinear elasticity. Here, prestrain refers to an incompatible ideal metric,
and contrary to the above situation, it can play a positive role in nature and in applications.

Figure 1.1 shows the optimal ‘relaxations’ of a planar film allowed to freely seek a strain-
minimizing deformation in space. Although the prescribed strain is radially symmetric, the re-
sulting configurations are not; they exhibit large-scale buckling and multi-scale wrinkling, and in
fact they still retain residual strain albeit smaller than the original one.

Figure 1.1. The minimizing shapes of thin films with radially symmetric strains
(target metrics). Reprinted from Klein et al. [5] with permission from AAAS.

How ‘good’ are these relaxations in general? This problem can be studied through a variational
model, pertaining to the non-Euclidean version of nonlinear elasticity, which postulates formation
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of a target Riemannian metric resulting in the morphogenesis of the tissue that attains a configu-
ration closest to being the metric’s isometric immersion. It now turns out that the answer to the
above question depends on the scaling of the energy minimizers in terms of the film’s thickness
and, a-posteriori, by the emerging isometry constraints on deformations with low regularity.

The study of mappings with weak regularity and the behavior of rough solutions to PDEs
arising in geometry or physics has been an important part of analysis for decades. Many physical
phenomena modeled by PDEs cannot be described by merely smooth solutions. On the other
hand, lack of regularity can lead to nonphysical solutions, or even to situations where generically
every function is close to a solution. This kind of mathematical behavior goes back to early work
by Nash and Kuiper on isometric embeddings, where a Riemannian surface can be C1 isometrically
embedded in R3, while higher smoothness requires higher dimensions.

In practical applications, thin films can be residually strained by a variety of means, such as:
inhomogeneous growth, plastic deformation, swelling or shrinkage driven by solvent absorption,
or opto-thermal stimuli in glass sheets. An interesting application, suggested by Kim et al. [4],
creates curvy films by using light technology for the temperature-responsive flat gel sheets that
transform into a prescribed curved surface when the in-built metric is activated.

We hope that the study of thin films will lead to a better understanding of three dimensional
solids and such fundamentals as energy scaling laws, or the role of curvature and symmetry
breaking. Current disagreements between theory and experiment need also to be resolved.

2. Incompatible elasticity and residual stresses

Let Ω ⊂ Rn be a simply connected domain and let G be a smooth Riemiannian metric on Ω.
It is well known that when the Riemann curvature tensor Riem(G) vanishes in Ω, there exists a
mapping u (in other words, a deformation) of Ω into Rn which is an isometric immersion of G:

(2.1) ∇u(x)T∇u(x) = G(x) ∀x ∈ Ω.

When the mentioned condition fails (as it fails for a generic choice of G), one proceeds by seeking
an orientation-preserving deformation u which minimizes the difference between the tensor fields
in the right and the left hand sides of (2.1). This difference is measured by the energy functional,
called the prestrained (or incompatible) elasticity:

(2.2) E(u) =

ˆ
Ω

dist2
(
∇u(x)G(x)−1/2, SO(n)

)
dx

defined over the set of admissible deformations u ∈W 1,2(Ω,Rn) with square integrable derivatives
of first order. The distance in matrix space Rn×n is measured in terms of the Hilbert-Schmidt
norm ‖A‖2 = trace(ATA). Note that E(u) = 0 if and only if u is orientation preserving and
satisfies (2.1). In this case, a change of variable reduces (2.2) to a standard nonlinear elasticity
functional of the type:

´
ΩW (∇u) dx which has been largely studied in the literature.

In the incompatible case when Riem(G) 6≡ 0, existence of an energy gap phenomenon was
shown in [8]. Namely, the equilibrium state of the body Ω must have a positive energy content:
inf E > 0, which we refer to as the residual energy. So far, only partial quantified estimates of
this infimum in terms of Riem(G) have been obtained. To better understand this problem, as
well as to explore the relationship between the components of the target metric and the Riemann
curvature as the driving force behind respectively the mechanical response and the residual stress,
one is lead to study models with reduced complexity, e.g. through dimension reduction.
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A thin film can be modeled by the Cartesian product Ωh = ω × (−h
2 ,

h
2 ), with the mid-plate

ω ⊂ R2 and small thickness h� 1. In what follows, we are concerned with analyzing the infimum
energy and the structure of minimizers of the energy functional below, now also in relation to the
vanishing thickness h→ 0:

Eh(uh) =
1

h

ˆ
Ωh

dist2
(
(∇uh)(Gh)−1/2, SO(3)

)
dx ∀uh ∈W 1,2(Ωh,R3).(2.3)

3. Γ-convergence

A major difficulty in studying the functionals (2.3) is that the frame invariance of the en-
ergy density spoils convexity. Thus, in general, direct methods of calculus of variations cannot
be applied and the minimizing sequences to (2.3) must be studied through asymptotic analysis,
exploiting the small thickness of the domain. Namely, one first hopes to establish compactness
properties for approximate minimizers of Eh as h → 0. These, naturally, vary among different
ranges of the scaling exponent β in: inf Eh ∼ hβ, which is in its turn induced by the prestrain Gh.
Having found the admissible set of the limiting deformations one then looks for suitable ‘dimen-
sionally reduced’ energies that would carry the structure of Eh. The method of Γ-convergence is
one of the strategies available for this purpose in the variational toolbox.

In the present set-up for thin films, proving Γ-convergence of h−βEh consists of deriving two
inequalities. The first inequality establishes a lower bound: Iβ(u) ≤ lim infh→0 h

−βEh(uh), for

any sequence uh converging to a mapping u. The second inequality shows that the previous bound
is optimal in the sense that for any given admissible u, we have Iβ(u) = lim suph→0 h

−βEh(uh)

for a particular recovery sequence uh converging to u.
The main feature of this definition, which in fact justifies its applicability, is that the limits of

any converging sequence of minimizers of Eh coincide with the minimizers of Iβ. Again, the results
vary and depend on the chosen scaling β; in general larger energies admit larger deformations,
while smaller energies (induced by Gh with small Riemann curvatures in terms of h) admit only
more restrictive deformations that need to preserve certain stringent curvature constraints.

4. Curvature driven energy scaling quantization

We start by a short excursion in the context of compatible prestrains satisfying: Riem(G) ≡ 0.
In this case, a change of variable brings the energy (2.3) to the standard nonlinear elasticity
functional defined on deformations uh of a tubular neighbourhood Sh of a surface S ⊂ R3, with
trivial prestrain G = Id3. When S = ω ⊂ R2, the quantitative geometric rigidity estimate
established in [3] lead to the rigorous study of the dimensionally reduced thin models in low
energy scalings. For more general geometries, a conjecture has been put forward [9] concerning an
infinite hierarchy of limiting thin shell models, each valid in its respective energy scaling regime
induced by the scaling of the applied body forces. In each case, the Γ-limit of h−βEh consisted of
a computable combination of bending and stretching.

In certain situations, the geometry of S allows for the matching of a lower order infinitesimal
isometries to higher order ones, whereas the corresponding theories collapse to one and the same
theory, valid under the lower order infinitesimal isometry constraint. The conjecture and this
‘collapse phenomenon’ is so far consistent with all the rigorously established analytical results.

The picture in the prestrained elasticity scenario, where Riem(G) 6≡ 0, is richer in as much as it
does not generate one sequential hierarchy but rather a network of limiting models, differentiated
by the scaling of the components of the curvatures of Gh when h→ 0.
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When Gh = G is independent of thickness parameter, an energy gap phenomenon can be
observed [1]. Namely, the only possible scaling after the non-zero energy drops below h2, is that
of order h4. In the first case, the Γ-limit of h−2Eh consists of a curvature functional defined over
the W 2,2 isometric immersions of the two dimensional manifold (ω,G2×2) into R3. In the second
case, the three Riemann curvatures R1212, R1213 and R1223 of G vanish identically. The Γ-limit of
h−4Eh is then given in terms of stretching i.e. the change of metric, and bending that is the induced
change of the second fundamental form, with respect to the unique isometric immersion that gives
the zero energy in the prior Γ-limit; plus a new term, that quantifies exactly the remaining three
possibly non-zero Riemann curvatures.

5. The Monge-Ampère constrained energy

The Monge-Ampère equation:

(5.1) det∇2v = f in ω ⊂ R2,

can be seen as a ‘small slope’ variant of the isometric immersion equations and it naturally arises
in the thin limit residual theories of the model (2.3). Indeed, for the incompatibility tensor of the

form Gh = Id3 + 2hγS where 0 < γ < 2, the Γ-limit I of h−(γ+2)Eh is effectively defined [7, 6]
on the deformations of regularity W 2,2 for whom the pull-back of the Euclidean metric coincides
with the prestrain Gh at the first order of expansion of their Gauss curvatures. This condition is
precisely equivalent to (5.1) with f = −curlT curl S2×2, whereas we have: I(v) =

´
ω |∇

2v|2.
For future purpose, let us note that the above discussion motivates the following weak form of

the two dimensional Monge-Ampère equation (5.1):

(5.2) Det∇2v := −1
2curlT curl(∇v ⊗∇v) = f.

The Monge-Ampère constrained variational problem I is the source of a wide range of questions;
from the technical obstacles in deriving the model as a Γ-limit, to the study of regularity and
multiplicity of minimizers or critical points, of which many remain open. In this line, we recently
demonstrated the surprising existence of a class of anomalous solutions to (5.2). The rest of this
article is dedicated to this line of inquiry.

6. Convex integration for the Monge-Ampère equation

When f is non-negative, any v ∈W 2,2(ω) satisfying (5.1) must actually be C1 and convex. Once
the convexity is established, the path opens up for applying the standard results in the theory of
nonlinear PDEs to obtain better interior regularity of v depending on the given regularity of f .
For the ‘flat case’ f ≡ 0, any such v must be developable: it is C1 and for every point x ∈ ω there
exists either a neighborhood of x, or a segment passing through it and joining ∂ω at its both ends,
on which ∇v is constant.

The same assertions of convexity/developability are true [10] for solutions v ∈ C1,α(ω) of (5.2)
with 2

3 < α < 1. Let us point out that a crucial step in proving results for the weak Hölder regular
solutions, is a commutator estimate which yields a degree formula for the Hölder continuous
mapping ∇v. Such commutator estimates were used for the Euler equations by Constantin, E and
Titi, and for the isometric immersion problem by Conti, Delellis and Szekelyhidi; this relationship
is not surprising in view of the presence of a quadratic term in the equations in all three cases.

The parallels with the isometric immersions and Euler’s equations do not stop here. In both
cases, the known rigidity statements are contrasted with existence of anomalous flexible solutions
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in lower regular regimes. It is perhaps surprising that similar statements on existence of anomalous
solutions to the Monge-Ampère equation (5.1) have been missing in the literature. Indeed, the
reformulation (5.2) leads to the following counter intuitive result [10]. Fixing an exponent α < 1

7

and the right hand side f ∈ L7/6(ω), the set of C1,α(ω̄) solutions to (5.2) is dense in C0(ω̄).
The critical value of Hölder’s exponent at the threshold of rigidity and flexibility is not yet clear;

it has been conjectured to be 1
3 ,

1
2 or 2

3 , relying on various intuitions. Here, and also in the case
of isometries, the Nash-Kuiper iteration method cannot yield anomalous solutions with regularity
better than C1,1/3, but on the other hand there seem to be little indication of how to prove the
rigidity for the regimes 1

3 < α ≤ 2
3 . This situation is, again, parallel with the recent results in the

context of fluid dynamics (see Delellis and Szekelyhidi [2] and the references therein) where the
famous Onsager’s conjecture puts the Hölder regularity threshold for the energy conservation of
the weak solutions to the Euler equations at exactly C0,1/3.

7. Conclusion

In this article, we motivated how the prestrain metric problem can be formulated for three
dimensional elastic bodies and showed how it leads to problems in geometry and analysis. In
particular, rigidity properties of the weak solutions to geometric PDEs come to the frontline,
including the discovery of the anomalous solutions to the Monge-Ampère equation. The investi-
gation of the dimensionally reduced models can also shed light on the precise role which is played
by the curvature tensor in the stress distribution within a three dimensional body and eventually
lead to a better understanding of the shape formation phenomena through growth, plasticity, etc.

Coming back to the energy (2.3), a direct consequence of the existence of the anomalous C1,α

solutions in the regime α < 1/7, is that for all given Gh = Id3 +2hγS one has: inf Eh � h1/2. This
could be improved to: inf Eh � h, if the anomalous regime was extended to α < 1/3. Finally,

scaling regimes between h2 and h1/2, and the corresponding behaviour of thin prestrained films,
are not yet well understood.

Other largely unexplored related topics include homogenization, symmetry and symmetry
breaking, inverse prestrain analysis (useful e.g. in tumor detection) and randomly generated
prestrain. These avenues of research connect between theory of elasticity, differential geometry,
analysis and PDEs. W also hope that a thorough theoretical understanding of the phenomena
discussed in this article could help in engineering sheets or bodies with finely controlled shapes,
dynamics, structural resistance to loads and elastic properties such as rigidity and flexibility.
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