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1. Introduction

This article is concerned with the analytical and geometrical questions emerging from the study
of thin elastic films that exhibit residual stress at free equilibria. Examples of such structures and
their actuations are present in many applications and they include: plastically strained sheets;
specifically engineered swelling or shrinking gels; growing tissues; atomically thin graphene layers,
etc. These and other phenomena can be studied through a variational model, pertaining to the
non-Euclidean version of nonlinear elasticity, which postulates formation of a target Riemann-
ian metric, resulting in the morphogenesis (i.e. shape formation) of the tissue that attains an
orientation-preserving configuration closest to being the metric’s isometric immersion.

In this context, analysis of scaling of the energy minimizers in terms of the film’s thickness
leads to the rigorous derivation of a hierarchy of limiting variational theories, differentiated by
the embeddability properties of the target metrics and, a-posteriori, by the emergence of isometry
constraints on deformations with low regularity. Many problems regarding multiplicity, singulari-
ties and regularity of the critical points of the derived models remain open and are hard to tackle
due to, generally speaking, lack of convexity. On the other hand, these problems lead to further
questions of rigidity and flexibility of solutions to the weak formulations of the related PDEs,
including the weak Sobolev or Hölder solutions to the Monge-Ampère equation. One particular
result in this line is that the set of C1,α solutions to the Monge-Ampère equation in two dimensions
is dense in C0 provided that α < 1/7, whereas rigidity holds when α > 2/3.

The discussion of thin limit models as above, has consequences for the three dimensional origi-
nal model in terms of energy scaling laws, understanding of the role of curvature in determining
the mechanical properties of the material, and in the effects of the symmetry and the symme-
try breaking solutions. There are still unresolved dichotomies between theory and experiments
which call for a thorough understanding of the above phenomena in their proper geometrical and
analytical contexts.

2. Incompatible elasticity and residual stresses

Let Ω ⊂ Rn be a simply connected domain and let G : Ω→ Rn×nsym,pos be a smooth Riemiannian
metric on Ω. It is well known that the manifold (Ω, G) can be isometrically immersed in Rn if
and only if its Riemann curvature tensor vanishes in Ω, i.e: Riem(G) ≡ 0. When this condition
holds, there exists a smooth mapping u of Ω into Rn, called in what follows a deformation, that
is an isometric embedding of G:

(2.1) ∇u(x)T∇u(x) = G(x) ∀x ∈ Ω.
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When the mentioned condition fails (as it fails for a generic choice of G), one proceeds by seeking
an orientation-preserving deformation u that minimizes the difference between the tensor fields
in the right and the left hand sides of (2.1). This is done by postulating a variational model
called the prestrained (or incompatible) elasticity; the objective is now to study the critical points,
minimizers or almost minimizers of the energy functional:

(2.2) E(u) =

ˆ
Ω

dist2
(
∇u(x)G(x)−1/2, SO(n)

)
dx

defined over the set of admissible vector fields with square integrable derivatives of first order,
i.e.: u ∈W 1,2(Ω,Rn). Above, SO(n) stands for the special orthogonal group of proper rotations,

while the distance of a matrix B (here, B is the product of two matrices ∇u(x) and G(x)−1/2

at each x ∈ Ω) from the compact set SO(n) in Rn×n is simply the minimal distance |B − R| =(
Trace(B −R)T (B −R)

)1/2
from all elements R ∈ SO(n).

More generally, for a description of an elastic prestrained material with reference configuration
Ω ⊂ R3, one also considers the energy:

(2.3) EW (u) =

ˆ
Ω
W

(
∇u(x)G(x)−1/2

)
dx.

The density function W : R3×3 → [0,∞] is assumed to satisfy the physical conditions of: (i)
frame invariance: W (RB) = W (B) for all B ∈ R3×3 and R ∈ SO(3); and (ii) normalisation:
W (Id3) = 0. Consequently, both W and its first derivative DW vanish on the energy well
SO(3). To fix the ideas, we further assume that W has a quadratic growth away from SO(3) i.e.:
W (B) ≥ c dist2(B,SO(3)) with a uniform positive constant c.

Note that E(u) = 0 (or EW (u) = 0) if and only if u is a smooth, orientation preserving
isometric embedding of (Ω, G) into Rn as in (2.1). In this case, a change of variable reduces (2.2)
to a standard nonlinear elasticity functional:

´
ΩW (∇u) dx which has been largely studied in the

literature (see [1, 3] and references therein). On the other hand, in the incompatible case when
Riem(G) 6≡ 0, existence of an energy gap phenomenon inf E > 0 was shown in [20]. In other
words, the equilibrium state of the elastic body has positive energy content, which we refer to as
the residual prestrain energy. So far, only partial quantified estimates of this infimum in terms of
Riem(G) have been obtained in [15]. To better understand this problem as well as to explore the
relationship between the components of the target metric and the Riemann curvature tensor as
the driving force behind respectively the mechanical response and the residual stress, one is lead
to study models with reduced complexity, e.g. through dimension reduction.

3. Thin films and dimension reduction in prestrained elasticity

In practical applications, thin films can be residually strained by a variety of means such as:
inhomogeneous growth, plastic deformation, swelling or shrinkage driven by solvent absorption, or
opto-thermal stimuli in liquid nematic glass sheets. An instructive effort to reproduce the effect
of the prestrain on the shape of thin films in an artificial setting was reported in [13]. There, thin
gel films were manufactured with the property that they underwent nonuniform shrinkage when
activated in a hot bath (see Figure 3.1) and hence realised a prescribed prestrain on the sheets.
Both large-scale buckling and multi-scale wrinkling structures appeared in the sheets, depending
on the nature of the prescribed metrics. More recently, another approach to controlling the shape
through prestrain was suggested in [12], through a method of photopatterning polymer films (see
Figure 3.2), yielding the temperature-responsive flat gel sheets that transform into a prescribed
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curved surface when the in-built metric is activated. For other experimental results see for example
[25, 29].

Figure 3.1. The experimental system and the obtained structures of sheets with
radially symmetric target metrics. Reprinted from [13] with permission from
AAAS.

Figure 3.2. Halftone gel litography from Kim et al. [12]: shapes obtained by
photopatterning polymer films. Reprinted with permission from AAAS..

A thin film can be modeled by the Carthesian product Ωh = ω × (−h
2 ,

h
2 ), with the mid-plate

ω ⊂ R2 and small thickness h � 1. As in (2.3), we are concerned with analyzing the infimum
energy and the structure of minimizers of the energy functional below, now also in relation to the
vanishing thickness h→ 0:

Eh(uh) =
1

h

ˆ
Ωh
W ((∇uh)(Gh)−1/2) dx ∀uh ∈W 1,2(Ωh,R3).(3.1)

For a general description, we assume that the incompatibility tensors are determined via a family
of metrics Gh. Below, we will showcase two distinct situations: the first one when Gh = G that is
constant along the thickness, and the second one when Gh are a thickness-dependent perturbations
of the trivially immersable (hence inducing stress-free equilibria) metric Id3.
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3.1. Γ-convergence. A major difficulty in studying the functional (3.1) is that the frame in-
variance of W contradicts the possibility of imposing suitable convexity assumptions. Thus, in
general, direct methods of calculus of variations cannot be applied and the minimizing sequences
of the family of problems (3.1) are studied through asymptotic analysis, exploiting the small thick-
ness of the domain. Namely, one first hopes to establish compactness properties for sequences of
approximate minimizers of Eh as h→ 0. These will naturally vary among different ranges of the
scaling exponent β in: inf Eh ∼ hβ, that is in its turn induced by the prestrain encoded in the
curvatures of Gh. Having found the admissible set of the limiting deformations u ∈ Aβ, one then
looks for suitable “dimensionally reduced” energies defined on Aβ that would carry the structure

of Eh. The method of Γ-convergence is one of the strategies available for this purpose in the
variational toolbox.

In the present set-up for thin films, proving Γ-convergence of the scaled energies 1
hβ
Eh consists

of deriving two inequalities. Fix a metric topology on the space of deformations uh. The first
inequality establishes a lower bound: Iβ(u) ≥ lim infh→0

1
hβ
Eh(uh), for any sequence uh converging

to a mapping u. The second inequality shows that the previous bound is optimal in the sense that
for any given admissible u ∈ Aβ, we have Iβ(u) = lim suph→0

1
hβ
Eh(uh) for a particular recovery

sequence uh converging to u. We then say that 1
hβ
Eh Γ-converges to the residual energy Iβ.

The main feature of the above definition, which in fact justifies its applicability, is that it
implies immediately that the limits of any converging sequence of minimizers (or approximate
minimizers) of Eh coincide with the minimizers of Iβ, hence identifying the governing variational

principle for the asymptotic behavior of the possible minimizers uh of (3.1). Applying this set-
up needs specific understanding of the problem at hand and also the usage of various analytical
and geometric techniques. As expected, the results vary and depend on the chosen scaling of
the energies or the prestrain metrics; in general larger energies admit larger deformations, while
smaller energies (induced by the metrics Gh with small Riemann curvatures in terms of the
parameter h) admit only more restrictive deformations, that need to preserve certain stringent
curvature constraints or that only slightly depart from a trivial isometric immersion. All done,
it still remains to investigate the properties of the minimizers in the set Aβ which despite their
better accessibility, pose another challenging task due to the presence of non-convex curvature or
isometry type constraints.

3.2. Showcase I: Curvature driven energy scaling quantisation. In papers [20, 2, 23] the
low energy limit theories have been discussed in case when the prestrain Gh = G is constant along
the thickness, i.e. G(x) = G(x′), where we denote x = (x′, x3). We will denote by G2×2 the
principal minor of the tensor field G, that is a metric on the two dimensional midplate ω.

Firstly, the critical energy scaling: inf Eh ∼ h2 takes place if and only if the following two
conditions are simultaneously satisfied: (a) There exists a W 2,2 isometric immersion of the two
dimensional manifold (ω,G2×2) into R3, i.e. the residual set A below is nonempty. (b) At least one
of the three Riemann curvatures R1212, R1213 or R1223 of G does not vanish identically. Secondly,
the scaled energies 1

h2
Eh Γ-converge to the following curvature (Kirchhoff-like) functional:

(3.2) I2(y) =
1

24

ˆ
ω
Q2(x′, (∇y)T∇~b) dx′,

defined on the set of admissible deformations y of ω, that are the isometric immersions of the
midplate metric G2×2 with two derivatives square integrable:

(3.3) A2 = {y ∈W 2,2(ω,R3); (∇y)T∇y = G2×2}.
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The density Q2(x′, ·) in (3.2) is given by nonnegative quadratic forms defined explicitly [2] in

terms of W , while ~b ∈W 1,2∩L∞(Ω,R3) is the Cosserat vector field, uniquely given by requesting:

(3.4) Q := [∂1y, ∂2y,~b] satisfies QTQ = G and detQ > 0.

In other words, ~b determines the preferred direction of “stacking” copies of surfaces y(ω) on top of
each other, in order to obtain the deformed three dimensional shell uh(Ωh) with minimal energy in

(3.1). Note that if one could write ~b = ∂3y, then (3.4) would say precisely that the induced three
dimensional extension of y is an orientation preserving isometric immersion of G. For incompatible
G, such immersion does not exist, yet still the optimal residual deformation y is singled out by

minimizing its bending content (3.2) with respect to the curvature form (∇y)T∇~b. This form

reduces to the second fundamental form of the surface y(ω) in case ~b happens to be the normal

vector, but in general ~b contains also the sheer directions.
Thirdly, an energy gap phenomenon can be observed. The only possible scaling after the non-

zero energy drops below h2, is that of order: inf Eh ∼ h4. In this case, the Γ-limit of 1
h4
Eh is

given in terms of the infinitesimal isometries and admissible strains on the surface isometrically
immersing G2×2, with an extra curvature term:

I4(V,S) =
1

2

ˆ
ω
Q2(x′, stretching of order h2) dx′ +

1

24

ˆ
ω
Q2(x′, bending of order h) dx′

+
1

1440

ˆ
ω
Q2(x′,

[
R1313 R1323

R1323 R2323

]
) dx′.

The functional I4 is the von Kármán-like energy, consisting of stretching i.e. the change of metric,
and bending that is the induced change of the second fundamental form, with respect to the unique
isometric immersion that gives the zero energy in the prior Γ-limit (3.2); plus a new term, that
quantifies exactly the remaining three possibly non-zero Riemann curvatures.

3.3. Compatible prestrains and hierarchy of theories with isometry constraints. We
now make a short excursion in the context of compatible prestrains satisfying: Riem(G) ≡ 0. In
this case, a change of variable brings the energy (3.1) to the standard nonlinear elasticity functional
form: Eh(uh) = 1

h

´
ShW (∇uh), defined on deformations uh of a tubular neighbourhood Sh of a

surface S ⊂ R3, but with the prestrain reduced to G = Id3.
When S = ω ⊂ R2, the quantitative geometric rigidity estimate established in [8] lead to

the rigorous study of the dimensionally reduced thin models in low energy scalings. For more
general geometries, in [21] a conjecture has been put forward concerning an infinite hierarchy of
limiting thin shell models, each valid in its respective energy scaling regime induced by the scaling
of the applied body forces. One can see through formal calculations, that if Eh(uh) ∼ hβ and
β ∈ [βk, βk+1), where the critical exponents are given by: βk = 2 + 2/k, then uh is asymptotically

an infinitesimal isometry of order k on S. Namely, writing ε = hβ/2−1 one has:

(3.5) (uh)|S ∼ φε = id+ εV1 + . . .+ εkVk and (∇φε)T∇φε − Id2 = o(εk).

In other words, the one-parameter family of deformations φε of S induce the change of metric
whose (k + 1)th order terms in ε disappear.

The Γ-limit of h−βEh in the above scenario consists of bending of order ε; plus stretching of
the lowest non-zero order εk+1 in case β = βk.

In certain situations, the geometry of S allows for the matching of a lower order infinitesimal
isometries to higher order ones, whereas the corresponding theories over the specific range [βk, βm]
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collapse to one and the same theory valid under the lower order infinitesimal isometry constraint.
The conjecture and this “collapse phenomenon” is so far consistent with all the rigorously estab-
lished analytical results. One interesting case scenario is that of convex S, where in [18] already
the 1st order infinitesimal isometry constraint was shown to be a sufficient condition for matching
to a full isometry. Consequently, the whole hierarchy of theories for scalings smaller than h2

collapse into a single “linear” elasticity theory.
Another interesting case is that of plates (S = ω ⊂ R2), where in [8] the 2nd order isometry

constraint was shown to imply matching to a full isometry. Therefore, all scalings larger than h4

and smaller than h2 induce the same limiting theory, consisting of minimizing a biharmonic energy
functional with a 2nd order isometry constraint, which in its turn translates into a degenerate
Monge-Ampère equation on the out-of-plane displacement v : ω → R. Indeed, rewriting the first
expansion condition in (3.5) as:

(3.6) φε = id+ εve3 + ε2w : ω → R3,

it is easy to check that the second condition in (3.5) holds if and only if sym∇w = −1
2∇v ⊗∇v.

Further, existence of w with this property is equivalent to:

(3.7) det∇2v = 0 in ω.

The picture in the prestrained elasticity scenario, where Riem(G) 6≡ 0, is richer in as much as it
does not generate one sequential hierarchy but rather a network of limiting models, differentiated
by the scaling of the components of the curvatures tensor for Gh when h→ 0. In [16, 19] a few of
these models are discussed. In particular, the mentioned Monge-Ampère constraint arises again
as a source of many questions regarding the rigidity, regularity and approximation properties of
Sobolev or Hölder weakly regular solutions. In particular, we are lead to the surprising existence
of a class of anomalous solutions to the Monge-Ampère equation (formulated through a very weak
Hessian determinant operator) in two dimensions. The rest of this article is dedicated to this line
of inquiry inspired by the thin prestrained model energy derived in [19].

3.4. Showcase II: The Monge-Ampère constrained energy. The Monge-Ampère equation
can be seen as a “small slope” variant of the isometric immersion equation (2.1) and it naturally
arises in the thin limit residual theories of the model (3.1). In [19, 17] the following incompatibility
tensor was considered:

(3.8) (Gh)1/2(x′, x3) = Id3 + hγS(x′) + hγ/2x3B(x′),

where S,B : ω̄ → R3×3 are two given smooth matrix fields, and the scaling exponent γ belongs to
the range 0 < γ < 2. The residual theory is then effectively defined on the limiting deformations
of regularity W 2,2 for whom the pull-back of the Euclidean metric coincides with the prestrain Gh

only at the first order of expansion of their Gauss curvatures. Namely, 1
hγ+2E

h Γ-converge to:

(3.9) If (v) =
1

12

ˆ
ω
Q2(∇2v + (sym B)2×2)

defined on the set of the admissible out-of-plane displacements:

(3.10) Af =
{
v ∈W 2,2(ω,R); det∇2v = f

}
where f = −curlT curl S2×2.

Further: inf Eh ∼ hγ+2 if and only if the following two conditions are simultaneously satisfied:
(a) The set Ag is nonempty, (b) curl(sym B)2×2 6≡ 0 or curlT curl S2×2 + det(sym B)2×2 6≡ 0.
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The proofs rely on fine properties of the Sobolev solutions to the Monge-Ampère equation:

(3.11) det∇2v = f,

studied in the now classical unpublished preprint [28] in the W 2,∞ regularity case. In [17] the same
techniques were shown to work in W 2,2 setting, regularity being proved for positive curvature g.

In order to better understand the constraint in (3.10), we point out a connection between
its solutions and the isometric immersions of Riemannian metrics, motivated by our studies of
nonlinear elastic plates. Since on a simply connected domain ω, the kernel of the differential
operator curlT curl consists of the fields of the form sym∇w, a solution to (3.7) can be characterized
by the criterion:

(3.12) ∃w : Ω→ R2 1

2
∇v ⊗∇v + sym∇w = 0 in ω.

As noted in the previous section, equation in (3.12) is an equivalent condition for the family (3.6)
to form a 2nd order infinitesimal isometry. Since here we are dealing with isometries relative to
an incompatible metric G, (3.12) is replaced by the equality of the tensor T (v, w) = 1

2∇v ⊗∇v +

sym∇w with a matrix field S2×2 that satisfies: −curlT curlS2×2 = f :

(3.13) T (v, w) = S2×2.

Clearly, there are many potential choices for S2×2, for example one may take S2×2(x′) = λ(x′)Id2

with ∆λ = −f in ω. Again, equation (3.13) states precisely that the metric (∇φε)T∇φε given by
φε in (3.6) agrees with the given metric G2×2 = Id2 + 2ε2S2×2 on ω, up to terms of order ε2. The
Gauss curvature κ of G2×2 satisfies:

κ(G2×2) = κ(Id2 + 2ε2S2×2) = −ε2curlT curlS2×2 + o(ε2),

while κ((∇φε)T∇φε) = −ε2curlT curl
(

1
2∇v ⊗ ∇v + sym∇w

)
+ o(ε2), so the problem (3.11) can

also be interpreted as seeking for all appropriately regular out-of-plane displacements v that can
be matched, by a higher order in-plane displacement perturbation w, to achieve the prescribed
Gauss curvature f of ω, at its highest order term.

The Monge-Ampère constrained variational problem (3.9) (3.10) is the source of a wide range of
challenging problems in analysis of Sobolev solutions to (3.11), ranging from the technical obstacles
in deriving the model as a Γ-limit, to the study of regularity and multiplicity of minimizers or
critical points. Many questions remain open, even in the positive curvature case f ≥ c > 0,
yielding the ellipticity of the constraint operator inside the domain. The following is a prototypical
challenging open problem in this context: Assume that f is a positive smooth function on ω. Are
smooth functions dense in Af with respect to the W 2,2 topology?

4. Rigidity for the Monge-Ampère equation

Motivated by the above discussion of the variational model (3.9) (3.10), one is led to study the
two dimensional Monge-Ampère equation (3.11) written in the weak form:

(4.1) Det∇2v := −1

2
curlT curl(∇v ⊗∇v) = f.

Note that W 2,2 solutions of (4.1) coincide with the solutions of the Monge-Ampère equation (3.11).
Straightforward analytical observations about C2 regular solutions to (3.11) imply that they

are convex (modulo a change of sign) if f ≥ c > 0 and that they are developable if f ≡ 0. A clear
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statement of rigidity for (3.11) is still lacking for the general f , as is the case for isometric immer-
sions, where rigidity results are usually formulated only for the strictly elliptic [4] or Euclidean
metrics [26, 11]. These two corresponding cases we will discuss below.

4.1. The positive curvature case f ≥ c > 0. In case f is non-negative, a solution to (4.1) is
called rigid if it is convex modulo a change of sign. In [28, 17] it was proved that any v ∈W 2,2(ω)
satisfying (3.11) in this case, must actually be C1 regular and locally convex. Moreover, v is then
an Alexandrov solution to (3.11). Note that once the convexity is established, the path opens
up for applying the standard results in the theory of nonlinear PDEs to obtain better interior
regularity of v depending on the given regularity of f .

Further, in [22] we showed that any v ∈ C1,α(ω) that is a solution to (4.1) with 2
3 < α < 1

for f being a positive Dini continuous function, must be convex. In fact, v is also an Alexandrov
solution, as before.

4.2. The degenerate case f ≡ 0. The “flat case” turns out to be more complicated. In [26]
it has been shown that any v ∈ W 2,2(ω) that solves (3.7) must satisfy v ∈ C1(ω); and for every
point x ∈ ω there exists either a neighborhood of x, or a segment passing through it and joining
∂ω at its both ends, on which ∇v is constant.

The W 2,2 hypothesis of [26] is optimal. Indeed, conic solutions to (3.7) exist if the regularity
is assumed to be only W 2,p for p < 2. One could even construct more sophisticated solutions by
gluing these conic singularities in a suitable manner, using Vitali’s covering theorem, or establish
the existence of strictly convex W 2,p solutions to the more sophisticated equation (4.2) below
when p < 2. In the meantime, it is known that for p < 2, there exist W 2,p solutions to (4.1) which
are not C1 and which fail to satisfy the developability statement at a given point in the domain.

A more general result in [10] applies to the (larger) class of Monge-Ampère functions. Namely,
the regularity and developability conclusions above hold true for v ∈W 2,1(ω) satisfying:

(4.2)

ˆ
ω
φx1(x,∇v)vxkx2 − φx2(x,∇v)vxkx1 dx = 0 ∀φ ∈ C∞c (ω × R2) ∀k = 1, 2.

Finally, in [22] it has been proved that any v ∈ C1,α(ω) solving (4.1) with f = 0, must be
developable as long as 2

3 < α < 1.
It is noteworthy that a crucial step in proving results for the weak Hölder regular solutions, is a

commutator estimate which yields a degree formula for the Hölder continuous mapping ∇v, where
f , even though being only the very weak Hessian determinant of v, plays the role of the Jacobian
det∇(∇v). Such commutator estimates were first used in [5] for the Euler equations and in [4]
for the isometric immersion problem; this relationship is not surprising in view of the presence
of a quadratic term in the equations in all three cases. The same quadratic terms play also a
major role for the applicability of the convex integration and iteration techniques in establishing
flexibility for the very weak solutions, discussed in the following section.

5. Convex integration for the Monge-Ampère equation

The rigidity statements of the previous section should be contrasted with the results explained
below. To put such results in a broader perspective, let us recall that questions of rigidity and
flexibility of solutions arise in various classes of PDEs in geometry and continuum physics. As a
major example, the rigidity of isometric immersions has been studied in differential geometry since
already the end of 19th century. It was then known that smooth surfaces in three-dimensional
space which are isometric to a piece of plane are developable, i.e. they are locally foliated as a ruled
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surface by straight segments aligned at each point with one of the principal directions. Similarly,
Hilbert showed that any smooth isometric immersion of the two dimensional sphere into R3 must
be a rigid motion. The celebrated results of Nash and Kuiper of the mid-20th century highlighted
the very fact that these rigidity statements rely much on the regularity of the surface or on the
co-dimension of the embedding [24, 14]. They showed that any given Riemannian manifold admits
a C1-regular isometric immersion into any Riemannian manifold of one dimension higher, ruling
out the above rigid scenarios.

It is perhaps surprising that similar statements on existence of anomalous solutions to the
Monge-Ampère equation (3.11) have been missing in the literature. The reformulation (4.1) of
the very weak solutions in the context of the nonlinear elasticity of plates and the quadratic
structure of the equation (3.13) leads to the following counter intuitive result [22]. Fixing an
exponent α < 1

7 , the set of C1,α(ω̄) solutions to (4.1) is dense in the space C0(ω̄), for all the right

hand sides f ∈ L7/6(ω) defined on an open, bounded, simply connected ω ⊂ R2. More precisely,
for every v0 ∈ C0(ω̄) there exists a sequence vn ∈ C1,α(ω̄), converging uniformly to v0 and for
whom there exists a sequence wn ∈ C1,α(ω̄,R2) converging uniformly to 0 and satisfying (3.13):

1

2
∇vn ⊗∇vn + sym∇wn = −∆−1(f)Id2 in ω̄.

When f ∈ Lp(ω) and p ∈ (1, 7
6), the same result is true for any α < 1− 1

p .

Similarly to the techniques by Nash and Kuiper, this result is better understood from the convex
integration viewpoint, and it is, at the same time, related to the recent applications in the context
of fluid dynamics (see [7] and the references therein). Existence of continuous periodic solutions
to the three dimensional incompressible Euler equations has been proved in [6]; these solutions
dissipate the total kinetic energy. On the other hand, as shown in [5], C0,α solutions are energy
conservative if α > 1

3 . Still, the Onsager’s conjecture puts the Hölder regularity threshold for the

energy conservation of the weak solutions to the Euler equations at exactly C0,1/3.
The critical value of the Hölder exponent at the threshold of rigidity and flexibility for the C1,α

solutions to the Monge-Ampère equation is not yet clear. This value has been conjectured to be
1
3 ,

1
2 or 2

3 , relying on various intuitive evidences. The Nash-Kuiper iteration method cannot yield

anomalous solutions with regularity better than C1,1/3, but on the other hand there seem to be
little indication of how to prove the rigidity for the regimes 1

3 < α ≤ 2
3 . Similarly, identifying the

characteristics of the W 2,p Sobolev solutions of (3.11) for all values of p remains an open problem
that could pave the way for better understanding of the behavior of prestrained sheets.

6. The energy-driven inverse design

One can use prestrain as a method for designing actively deforming soft matter devices with
specific geometries. For example, gel lithography is suggested in [12] as a tool for printing two
dimensional sheets which are activated into pre-strained surfaces. The idea is to depart from
a minimizer of the dimensionally reduced energy Iβ (as explained in section 3), and inversely
calculate the prestrain metric through the Euler-Lagrange equations.

In [29] several sets of experiments are reported, in which nontrivial shapes (see Figure 6.1) were
assumed by the actuated sheets of elastomers through writing topological defects, corresponding to
singular prestrains, or the nonuniform director profiles through the thickness. The programmable
mechanical response of these materials yields monolithic multifunctional devices and serves as
reconfigurable substrates for flexible devices.



10 MARTA LEWICKA AND MOHAMMAD REZA PAKZAD

Figure 6.1. Actuation by topological defects and the origami-like actuators [29].
Reprinted with permission from AAAS.

To formulate the design problem in a broad sense, suppose one needs to manufacture a two
dimensional shell S ⊂ R3 such that at each point p ∈ S a material of the appropriate type p is
used. The question is how to print a thin film ω ⊂ R2 combined of these materials, in a manner
that the activation of the prestrain in the film would result in a deformation leading eventually
to the desired surface shape S. In view of [20, 2], the activation y : ω → R3 must be an isometric
immersion of the Riemannian manifold (ω,G2×2) into R3, where G2×2 is the prestrain in the flat
(referential) thin film. Denoting the prestrain induced by the material of type p by g(p), this
design problem thus requires that S = y(ω), and that any x′ ∈ ω carrying a material of type p is
mapped to a point p ∈ S:

(6.1) y(x′) = p, ∇y(x′)T∇y(x′) = G2×2(x′) = g(p) in ω.

The same problem can be posed for a three dimensional shape and hence a higher dimensional
version of (6.1) is also of interest for potential applications. Indeed, (6.1) leads to a generalization
of the isometric immersion problem so far not discussed in the literature.

7. Conclusion

In this article, we motivated and showed how the prestrain metric problem can be formulated for
three dimensional elastic bodies and how it leads to problems in geometry and analysis of PDEs.
In particular, rigidity properties of the weak solutions to geometric PDEs come to the frontline of
research, including the discovery of the anomalous solutions to the Monge-Ampère equation. The
investigation of the dimensionally reduced models can also shed light on the precise role which
is played by the curvature tensor of the prestrain metric in the stress distribution within a three
dimensional body and eventually lead to a better understanding of the shape formation phenomena
through growth, plasticity, etc. Other largely unexplored related topics include homogenization,
symmetry and symmetry breaking, inverse prestrain analysis (useful e.g. in tumour detection)
and randomly generated prestrain. These avenues of investigation connect between theory of
elasticity, differential geometry, analysis and PDEs. Finally, we hope that a thorough theoretical
understanding of the phenomena discussed in this article could help in engineering sheets or bodies
with finely controlled shapes, dynamics, structural resistance to loads and elastic properties such
as rigidity and flexibility.
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[6] C. De Lellis and L. Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407.
[7] C. Delellis and L. Szekelyhidi Jr., The h-principle and Onsager’s conjecture, EMS Newsletter March 2015.
[8] G. Friesecke, R. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-

convergence, Arch. Ration. Mech. Anal., 180 (2006), no. 2, 183–236.
[9] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math.,

81 (1959), 901–920.
[10] R.L. Jerrard, Some rigidity results related to Monge-Ampère functions, Canad. J. Math. 62, no. 2, (2010),

320–354.
[11] R.L. Jerrard and M.R. Pakzad, Sobolev spaces of isometric immersions of arbitrary dimension and co-

dimension, to appear.
[12] J. Kim, J.A. Hanna, M. Byun, C.D. Santangelo, R.C. Hayward, Designing responsive buckled surfaces by

halftone gel lithography, Science, 335, (2012), 1201–1205.
[13] Y. Klein, E. Efrati and E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics, Science,

315 (2007), 1116–1120.
[14] N.H. Kuiper. On C1 isometric embeddings, I., Nederl. Akad. Wetensch. Proc. A 58, (1955), 545 – 556.
[15] R. Kupferman and Y. Shamai, Incompatible elasticity and the immersion of non-flat Riemannian manifolds in

Euclidean space, Israel J. Math. 190 (2012) 135–156.
[16] M. Lewicka, L. Mahadevan and M.R. Pakzad, Models for elastic shells with incompatible strains, Proceedings

of the Royal Society A, 470, 1471–2946 (2014).
[17] M. Lewicka, L. Mahadevan and M.R. Pakzad, The Monge-Ampère constrained elastic theories of shallow shells,

Annales de l’Institut Henri Poincare (C) Non Linear Analysis (2015).
[18] M. Lewicka, M.G. Mora and M.R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces

and elasticity of thin shells, Arch. Rational Mech. Anal. (3), 200 (2011), 1023–1050.
[19] M. Lewicka, P. Ochoa and M.R. Pakzad: Variational models for prestrained plates with Monge-Ampère con-

straint, Diff. Int. Equations (2015).
[20] M. Lewicka and M.R. Pakzad, Scaling laws for non-Euclidean plates and the W 2,2 isometric immersions of

Riemannian metrics, ESAIM: Control, Optimisation and Calculus of Variations, 17, no 4 (2011), 1158–1173.
[21] M. Lewicka and M.R. Pakzad, The infinite hierarchy of elastic shell models: some recent results and a conjecture,

Fields Institute Communications, Volume 64, (2013), pp 407–420.
[22] M. Lewicka and M.R. Pakzad, Convex integration for the Monge-Ampere equation in two dimensions, to

appear.
[23] M. Lewicka, A. Raoult and D. Ricciotti, Plates with incompatible prestrain of higher order, to appear.
[24] J. Nash, C1 isometric imbeddings, Ann. Math., 60, (1954), 383–396.
[25] M. Ortiz and G. Gioia, The morphology and folding patterns of buckling-driven thin-film blisters, J. Mech.

Phys. Solids, 42 (1994), pp. 531–559.
[26] M.R. Pakzad, On the Sobolev space of isometric immersions, J. Differential Geom., 66, (2004) no. 1, 47–69.
[27] A.V. Pogorelov, Extrinsic geometry of convex surfaces, Translation of mathematical monographs vol. 35, Amer-

ican Math. Soc., 1973.
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