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Abstract
We prove the existence of a gap phenomenon, non-existent for the 3 dimensional
case, for the relaxed Dirichlet energy of maps from a 4-dimensional domain into
sphere.

1 Introduction

Let 2 C R" be a bounded open set with regular boundary and let

H'(Q,8%) ={uec H'(Q,R*); u(x) € S* a.e. onQ}

and

H)(2,5) ={uec H'(Q,5);u=¢ ondQ}
where ¢ is a given boundary data. For u € H;(Q, S?) the Dirichlet energy is given by

E(u) = [, |Vul>. We assume that ¢ is in C*(9Q, S?) and can be extended into Q by a
smooth map.

We say that u is a weakly harmonic map if it is a critical point for the functional E,
i.e. if and only if we have

dE<u—|—tv

a 7> =0 forall veCX(,RY).
dt |u—|—tU| lt=0

In other words, u is weakly harmonic in the Sobolev space H'((2,S?) if it satisfies the
following equation in the sense of distributions :

—Au=u|Vul?> in Q
(1.1)
u(z) € S* ae.
*New coordinates: Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22 - 26,
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Assuming ¢ : 02 — S? is as above, one of the important problems which is still open
is whether smooth harmonic extensions of ¢ into €2 exist. As a first attempt one may want
to minimize the Dirichlet energy in H (€2, 5?) and prove the regularity of the solution.
But in fact if we define

pp = inf E(u) < inf E(u)=: j,,

HL(Q,5%) Cr(Q,5?)
the strict inequality
Mo < [
happens sometimes (See [15]). Thus minimizers of E are not necessarily smooth and we
should find other harmonic maps which could be a suitable candidate for a smooth solu-

tion. On the other hand R.Schoen and K.Uhlenbeck ([20]) proved that these minimizers
are smooth in €2 except on a finite set of points.

In trying to attack this problem, another functional on H;(Q, S?) has been studied
which is called the “relaxed energy”. In fact, the relaxed energy is the largest sequentially
lower semi-continuous functional on H (€2, 5*) which is less than £ on C3°(Q,5?) :

Definition 1.1 The relazed energy F of E on H(Q,S?) is defined to be

F(u) := inf { lminf E(un) ; un € CX(Q,5%), up — u} . (1.2)

n— 00

When the smooth maps which take ¢ as their boundary value are weakly sequentially
dense in H(, 5?) (See [13] and [19]), F will be well defined. Moreover F is sequentially
lower semi-continuous with respect to the weak topology in H(€, S%) and we have

inf F= inf FE. (1.3)

H(Q,5%) C(Q,5%)

This equation shows the importance of study of F. Since the infimum of F in H(Q, S5?)
is achieved, the question which should be considered then is whether a minimizer of F is
weakly harmonic and to what extent it is regular.

In this direction, based on the results of [7], F.Bethuel, H.Brezis and J.M. Coron (See
[5]), established the striking fact that, for n = 3, the relaxed energy is given by the
following elegant algebraic formula :

F(u) = F(u) :== E(u) + 8 L(u)

where .
L(u) := po sup {/ wrwy Adip — Y wy A @b} (1.4)
Ty:Q-RrR Ve o9
|d] < 1



where wy is the volume form on S? (or can be replaced by any 2-form w, [, w = 4m).
In particular this yields that the critical points of F are weakly harmonic. However,
F.Bethuel and H.Brezis have also shown that the minimizers of

Fy = E + 81AL,
for 0 < A < 1, are smooth in €2 except on a finite set of points (See[4]).

If u € HL(Q,S?) is smooth in Q except on a set of finite points {py,..., pm}, with
degree d; at the point p;, then L(u) is the minimum length of the segments connecting
these singularities with respect to the multiplicities (See [7]). In other words

L(u) = m; (Z d; [[pi]], Q)

where we define for the integer multiplicity rectifiable 0-current S, = Z d; [[pi]]
i=1

m;(Sy, Q) :=inf {M(T); T € Ry (R*), spt T C Q, 0T =S, }.

Here we study the same approach for n > 3 but this generalization meets new obstacles.
One may introduce for w, any 2-form on S? which satisfies [, w =1

L(u) == sup {/ wwAdy — | gfwA w} (1.5)
b e An3(@) e a0
|d]oo <1

as a generalization of L(u) in the 3-dimensional case. Observe that L is independent of
the choice of w and is continuous on HJ(£2, 5*) for @ C R* and the functional

F(u) := E(u) + 87 L(u) (1.6)
would still be weakly lower semi-continuous. But we have the following fact :

Theorem [ For every Q C R* and every map ¢ € C*(99, S?), smoothly extendable into
Q, there ewists u € HJ(S2, S*) such that

F(u) < F(u). (1.7)

Moreover there exists a domain Q C R* and ¢ € C™°(952, S?), smoothly extendable into
Q, for which the following gap phenomenon holds :

inf  E< inf F< inf F. (1.8)
HL(0,52) H1(2,5?) C(2,5%)



The difference with the case n = 3 lies in the quantity which L(u) represents. We
shall consider a map u € H) (€, S?), which is smooth except on a finite union of (n — 3)-
dimensional submanifolds of Q : {0y, ...0,,}. The degree d; of u on each o; is well defined
and we define S, := Y"1 d;[[0;]]. Computing L(u), we see that

= sup /@/}< sup /S@b:m,(Su,Q) (1.9)

|0 <1 ldylls <1
where ||.||* is the co-mass norm on the space of forms and
M, (S, Q) == inf {M(T); T € D, ,(R"),dT =S, spt T C 0}

is the mass of the minimal normal (real) current in  with boundary S,. The second
equality in (1.9) is due to the fact that there exists always a calibration for minimizing
normal currents, which we shall discuss later in this paper (See proposition 2.3). Mean-
while, m;(S,, ), the minimal mass of integer multiplicity rectifiable currents in € which
are bounded by S,,, is still proportional to the energy needed for removing the singularities
of u. Here arises the main question which should be answered if we want to continue as
above, that is whether

m,(S,Q) = mi(S,Q) VS € R, 35(Q).

But in contrast with the case n = 3, the answer is no for n > 3. In particular, for n = 4,
there exists a curve [[T]] in R* for which

my ([[T]]) < mq({[T]).

This gap phenomenon was first proved by L.C.Young in [22]. F.Morgan in [17] and
B.White in [21] have given other examples of such curves in R?.

Remark 1.1 However, in [18], we observed that the critical points of F are still weakly
harmonic in Hé(Q, S?) and we used this to prove the existence of infinitely many weakly
harmonic extensions of @ onto €.

Finally we may search for the amount of energy needed to relax the Dirichlet energy.
In section 3 we prove that the topological singular set S, of any u € H}($,S5?) is the
boundary of some integer multiplicity rectifiable current. Then the discussions in this
paper suggest that F coincides with

F(u) := E(u) + 8mm;(S,, ).

We can only prove that F < F, the reverse inequality is still an open problem (See
proposition 3.1 and the remark following). However, we can prove F > F when we
consider the problem of relaxing the 3-energy of maps into S3. We will present this
example in a forthcoming paper.



2 Preliminaries

2.1 The subspace RY (1, 5%

Definition 2.1 We say that u € H}(Q,S?) is in RY(Q,S?) if and only if u is smooth
except on B = |Ji~, 0, U By , a compact subset of Q, where H" *(By) = 0 and the
oi, i = 1,---,m are disjoint smooth embeddings of the open (n — 3)-dimensional unit
disk. Moreover we assume that any two o; and o; can meet only on their boundaries.

Remark 2.1 According to ([2], theorem 2 bis), R (€2, S?) is dense in H)(Q,S?).

Definition 2.2 Letu € H(2, S?). We define the current S, € D, 3(RQ) to be the current
defined by

Su(a) := /Qu*w ANda Yo e D" 3(Q). (2.1)

Here D*(Q) is the set of smooth k-forms on Q with compact support (See[11], 2.2.3) and
w is some 2-form on S? for which fSZ w=1.

A simple observation shows that the definition of S, is independent of the choice of w due
to the fact that the difference of two closed forms on S? is exact. The existence of the
integral (2.1) is a direct consequence of the following inequality :

1
lu*w| < 8—|Vu|2 a.e. on{) (2.2)
m

where 47w = wy is the standard volume form of S2.

Definition 2.3 Let u € RY(Q,S%) and let B = |Jo; U By be the singular set of u.
Suppose that each o; is oriented by a smooth (n — 3)-vectorfield &;. For a € o; and N, the
3-dimensional plane orthogonal to o; at a. Consider the 3-disk M, s = Bs(a) NN, oriented
by the 3-vector M, such that &;(a) A M, = (—]_)nan . Then the topological degree of u on
the 2 dimensional sphere ¥, 5 = OM, s is well defined and is independent of the choice of
a for & small enough. We should call this integer the degree of u on o; and denote it by

degy,u .

We shall mention here some useful facts which we have already proved in [18]. Recall
that any k-dimensional rectifiable subset M of R" considered with a multiplicity 6 and
oriented by a unit k-vector field £ defines a rectifiable current as follows

(M, 8,6)(a) := /M<5,a>ecmk Vo € DF(RY).



Lemma 2.1 Letw = ;wy and u € RY(Q, S?). Then the (n—2)-vectorfield D(u) defined

on Q\B by the equation
< D(u)(z), VU > wgn == u'w(z) AT VI € A" (R (2.3)

is a simple (n — 2)-vectorfield tangent to the smooth manifold u="'(y) for all regular value
y = u(x) € S?. Meanwhile

= 1
|D(u)| = E|J2u| a.e. on S (2.4)

An element of Agx(R") is called simple if and only if it equals the exterior product of
k vectors of R™ ([9], 1.6.1).

In the view of lemma 2.1, for any y € S? a regular value of u € RX (%, S?), the current

7 —1 [j(u)
T, =7u 1, — 2.5
y ( () |D(u)|> (2.5)

is well defined. Moreover

Proposition 2.1 Consider u € R} (£, S?) and T, as in (2.5), then for almost all y € S?
, Ty is a rectifiable current in R" with support in Q and

U —1 ﬁ(gp)
aTy =S, +7 <§0 (y)7 L, |5(¢)|> (26)

where the (n — 3)-vectorfield D() on 8 is defined by the equation
< D(@)(2), U > wp, == g*w(z) AT VT € A, 4(E,)

where E, = T,(09) is the tangent space to 00 at x and wg, is its unit volume form.

Proposition 2.2 Let u € RY (2, S?) and B = J; 0, U B, its singular set. Then

Su = Z(deggiu)T(ai, 1,d;).
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2.2 Calibrations and minimizing real currents
Let T be a normal current in D,,(R") with support in a compact set : K.

Definition 2.4 The measurable form « in Q™(R") is called to be a calibration for T in
K if
(1) « is exact,

(1) llegills < 1, (2.7)

(17i) T(«) = M(T).
We say then that T is calibrated in K.

We have this interesting proposition which shows the importance of calibrations in the
study of minimal currents :

Proposition 2.3 The real current T is calibrated in K if and only if it has the minimal
mass among all the real currents supported in K and taking the same boundary. Specially
for any open bounded set 2 in R™ and any real flat chain S in 2 we have

m,(S,Q2) = sup S(¢). (2.8)

lld[l5 <1
|

We omit the proof since it is the same as the proof for ([12], proposition 4.35, p. 59).
The interesting fact is that, as a result, a minimal integer multiplicity rectifiable current
is calibrated if and only if it is also a minimal real current for the same boundary. The
only cases where this always happens are when the minimal current is of dimension or
codimension 1 in 2. In other words if dim S = 0 or n — 2, then

m.(S, Q) = m;(S, Q). (2.9)

For the proof and some counterexamples when the conditions are not satisfied see ([10],
section 5). The readers can refer to ([11], vol II, section 1.3.4) for more details. In [1],
the authors present an interesting proof of (2.9) for dim'S = n — 2. Also different proofs
for the zero dimensional case can be found in [7] and [8]. For other counterexamples see
[17], [21] and [22].

2.3 The F-energies
For any 2-form w on S? satisfying [, w = 1 and u € H (Q, 5?) we define

L(u) := sup {/ uw'wAdyp — O w A w} (2.10)
¢ c Anf?)(g) Q o0
ldiplloe < 1



and

L*(u) := sup {/ wrw Adyp — ©'w A w} (2.11)
Y e AM3(Q) VO
ldplls <1

where |.| and |[|.||* are respectively the euclidean and the co-mass norms on the space of
forms. The definitions are independent of the choice of w (See [18]), so from now on we
put w = (1/4m)wy.

Remark 2.2 L and L* are both continuous with respect to the H' norm in Hé(ﬂ, S?).
The proof is the same as for the case n =3 in [5].

We have
Lemma 2.2 For any u € Hé(Q, S?), S, is a real flat chain. Moreover we have
L(u) < L*(u) = my(Sy, Q). (2.12)

Proof : Set
D,(a):= / urw A Ya € D" %(Q).
Q

Since by (2.2) we have 8tM(D,,) < E(u), D, is a normal current. Moreover, by definition,
S, = 0Dy, so S, is a real flat chain. We have, using (2.8),

mr(su - Sv, Q) - sup (Su - S’U)(z/))
Y€ AHQ)
ldpl[5, <1

< ClIVull[Voll2([[Vu = Vull),

where the last inequality is obtained by the same method as in ([5], theorem 1). As a
result m,(S,, ) is continuous with respect to the strong topology in H(Q, 5?).

On the other hand, if u € RX (%, S?), using the co-area formula and proposition 2.1
successively we obtain

/Qu*w/\dd)— aﬂcp*w/\d) :/Qu*w/\dd)—/gqf)*w/\d@[)
= [ (Thtav) ~ i) du
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where ¢ is any smooth extension of ¢ into 2. This implies

L*(u) = sup {/ w'w A dy — o'W A w}
b € AP3(0) Q o9
ldpl[5, <1

= sup Su(¥) = m,(Sy, Q).

lld[]5 <1
Since L*(u) and m,(S,,) are continuous in H'-norm and considering the fact that

RX (€, 5%) is dense in H (2, 5?) for the strong topology, we deduce the equality in (2.12).
Moreover, L < L* as ||¢]|5, < |||~ for all differential forms. m

Definition 2.5 We define the F-energies to be
F(u) := E(u) + 87 L(u)

and
F*(u) :== E(u) + 87 L*(u).

2.4 Sequentially weak density of smooth maps in H}(Q, S?)
Let us recall some facts about maps in R (€2, 5?) :

Proposition 2.4 There ezists C > 0 such that for all u € R (S, S?%) we have

8mm;(S,) < E(u) + C. (2.13)

Moreover there ezists a sequence u,, € Ry (€, S?) such that
( Su,, =0
Uy = U on K,,

) p(Ky) — 0 as m — oo (2.14)

E(up) < E(u) 4+ 8mm;(S,) + %

(U — u in H'
]

(2.13) is proved in [1]. In ([2], section VI), the author, suggesting (2.14) and con-
sidering (2.13), remarked that smooth maps are sequentially dense in Hé(Q, S?) for the
weak topology, as in the case n = 3 (See [3]). Recent developments by F.Hang and
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F.H.Lin have shown that this argument should be modified for when the domain is not
contractible. They remarked that “S, = 0”7 is not always the sufficient condition for the
strong approximability of u € H'(M, S?) by smooth maps and we should consider global
topological obstructions too (See [14]). But the arguments used in [6] work locally and
therefore if B” is the n-dimensional unit disk in R™, for any map u € Hé(B”, S?), there
exists a sequence of smooth maps u,, € C:;O(B”, S?) such that

(4) Upy — w in H"
, (2.15)
(4) E(um) < 2E(u) + C + O(E)

We will present our method for proving (2.14) in a forthcoming paper where we will
treat the question of sequentially weak density of smooth maps in Sobolev spaces between
manifolds ([19]).

3 A lower bound for the relaxed energy

Proposition 3.1 Letu € H;(Q, S?), then S, is the boundary of some integer multiplicity
rectifiable current. Set

F(u) := E(u) 4 87m;(S, Q). (3.1)

F is lower semi-continuous with respect to the weak topology on H;(Q, S?) and
F(u) < F(u), Yue HLQ,S?). (3.2)

Remark 3.1 We do not prove that F is the relazed energy. A stronger result for the case
Q = B"™ would be to show that m;(S,, B") is continuous on H(B",S?), which is still an
open problem (Compare with Remark 2.2 and lemma 2.2).

Proof : For the sake of simplicity we prove the proposition for 2 = B", the n-
dimensional unit disk. For the general case we can replace smooth maps by maps satis-
fying the condition S, = 0.

Let u € Hi(Q, S?) and consider a sequence of smooth maps converging weakly to u as
in (2.15). Since u,, is smooth, 0G,,,, = 0, where G, is the graph of w,,. Also since the
Dirichlet energy is regular (See [11], vol II, section 5.2.1), the G, are equibounded in
mass. By the Compactness theorem, there is an integer multiplicity rectifiable n-current
T supported in Q x S? such that G,, — T up to some subsequence. By ([11], vol I,
section 5.5.2, proposition 3), G, € cart>'( x S?) for all m. So by the closure theorem
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([11], vol I, section 5.5.2, theorem 6) and the Structure theorem ([11], vol II, section 5.2.1)
we have

T =Gy + Ly x [[S?]] € cart®(Q x S?)

while Lz is an (n—2)-dimensional integer multiplicity rectifiable current in Q. From ([11],
vol 11, section 1.2.4, proposition 15) and (2.15) we deduce that

87M(Ly) < E(u) + C. (3.3)

Now let 7 and 7 be the respective projections of € x S? on  and S2. Since 0T = 0, for
any 2-form w on S? and any compactly supported (n — 3)-form « in Q we have

/ ww Ada =Gy(r*(da) AN t*w) = 0G, (T"a A T°w) = —0Ly ().
Q

So S, = d(—Lr), which proves the first claim of the proposition. Moreover, as a conse-
quence, F is well defined for the maps in H(€Q, S?).

Let u,, be a sequence of maps in H;(Q, S?) converging weakly to u. We will prove
that _ _
F(u) <liminf F(uy,). (3.4)

m—00
Put B
G := liminf F'(u,y,).

m— o0

Passing to some subsequence of u,, if necessary, we have F (Um) — B < +o00. Let —L,, be
the mass minimizing integer multiplicity rectifiable current taking S,  as its boundary.
The u,, are equibounded in energy while the L,, are equibounded in mass. So, using the
same arguments as above, we see that the cartesian currents

Ty i= G, + Ly x [S?]

converge to some current 7' := G, + L X [[S?]] in cart®*'(Q x S?), up to a subsequence.
By ([11], vol II, section 1.2.4, proposition 15) we get

F(u) = E(u) + 87m;(S.) < E(u) + 87M(L)

< lim inf(E(um) + 87M(L,,))

m—00

= lim inf(E (up,) + 87m;(Sy,,))

m—00

= 8.

This proves (3.4). Thus F is lower semi-continuous with respect to the weak topology.
(3.2) follows immediately as F' coincides with E' on smooth maps. |
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4 Proof of theorem 1

4.1 Proof of (1.7)

Regarding lemma 2.2 and proposition 3.1, it suffices to prove the existence of a map
u € RY(Q,S%) which satisfies

1 (Su, Q) < m5(Su, Q). (4.1)

This happens for n = 4. Specially there is a curve " in R* for which m, ([[T]]) < m;([[[]])
(See [22], [10] and [11], vol IT for more details). For any Q C R* and boundary data ¢, we
can construct a map u € R;O(Q, S?) which is smooth except on such a curve, supported
in a small ball in €. The method is almost the same as the one used by the authors in
[1] for constructing a map with prescribed singularities and constant boundary value, so
we will not expose the details in this paper. This map will satisfy (4.1).

4.2 Sketch of the proof for (1.8)

a) For 0 < ¢’ < §, we construct a domain Q55 C R* and a map @55 € C®(0Qs4, S?)
which is extendable onto €25 5. We put

H(i&/ = Hl (95’51752)

5,8

and
O:;,%/ = H(},(;/ N COO(QJ,J/, 52)
b) We prove that
inf F* — inf E=0(0) — k

1 (o 0]
H&,s' 06,5’

when £ > 0.
c¢) Regarding the fact that FF < F* the theorem is proved by choosing ¢ small enough.
4.3 Construction of (5
Let B be an integer multiplicity m-rectifiable current in R", without boundary. Put

mi(B) := min {M(T); 9T = B, T € Rys1 (R")} (4.2)

where M(T) is the mass of T. By [22] there exists I, a closed curve on K C R*, a surface
homeomorph to the Klein bottle and A, integer multiplicity rectifiable surface in R* such

that :
(1) OA = 2[[I']

(i) M(A) < 2m,({[T]]) (4.3)
(1ii) sptA = K
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where

[[T]] :== (T, 1,7)

is the integer multiplicity rectifiable current based on I' and oriented by the unit tangent
vectorfield ¥. By slight modifications of I' and K around their singular subsets, we may
consider them to be smooth. Let 77 be a smooth normal vectorfield on K C R*. We recall
that [' C K and we put :

Yso={x+ti(x);0<t <0,z €T}

and

Ls:={x+di(x); z €T}
We observe that for X5 and I's suitably oriented and § sufficiently small we have :
A[[Xs]] = [[Ts]] — [[T]- (4.4)
Let Vs be the tubular neighborhood of Iy :

Vs={yeR';d(y,T) <6}

For each y € T and 0 < ¢’ < § let B(4,¢',y) be the 2-dimensional disk in R* centered at
y and with radius 6’ which is orthogonal to Y5 and observe that

B(5,8') = | J B(5.5",y)

yer
is a 3-dimensional submanifold of R*. We shall construct Qs such that B(4,4") C Qs

Let T be a smooth surface such that

(1) 0T = [[L's]]
(i) T N B(5,8") = 0 (4.5)

(i73) 7(z) is the outward tangent to T at x + d7i(z) € 0T, Vz € k.

Such T exists : As m(R*\V;) = 0, there exists some smooth T, C R*\V; such that
0Ty = [[I']]. So if Ty = X5 U Ty we get 011 = [[I'5]]. T is obtained by smoothing 7} in a
neighborhood of I'. Let €7,¢€5 be 2 smooth orthonormal vectorfields on T such that for
each y € T's, é1(y) and é3(y) are tangent to B(d,d,y). We put

Us = {z + 1161 (1) + taca(z) ; (£ +13)F <0},
We choose ¢ small enough and some ¢’ < ¢ such that

B(5, (5’) NWyg =10

13



where Wy := {x € R*; d(z, K) < §'}. This is possible since ['s has no intersection with K.

For every x € I', y = = + 07i(z), let C(d,¢',y) be the cone with the vertex z and the
base B(d,¢',y) and put

C(6,6") = | J C(6.9, ).

yel's

We define the map 7 : C'(8,0") — B(6,9’) as follows : For every z € C'(4,¢',y), m(2) is the
intersection of the line x — z and the disk B(d,¢’,y), where x is the vortex of the cone
C(6,¢',y). Then we put

95,5/ = 0(5, (5’) UUs UWs. (46)

(25 is a domain in R* which contains tubular neighborhoods of K and T while 0 5
contains the set B(d, ).

4.4 Construction of s s

Let B be the unit disk in R? and v : B — S? be the smooth covering map as defined
in [4], which satisfies these conditions :

( (i) v|op = const. =e € S, v(0) = —e

(i) /B|Vl/|2:47r (4.7)

| (@1) For z # e in %, #w '(z) =1 and deg (v, B,0) = 1.
We define the map @55 € C®(Q54,5%) as follows :

v ((%)%)) if z=a+t1€] +1t265 € Uy
G55 (2) =

€ if 2 g_ﬁ U5l

And we put
Vo0 1= Do oa, -

4.5 Estimation for inf £ on C'(;%,

Let u € Cg%. By (2.2), (2.4) and the co-area formula we get :

/ Va2 287/ |u*w|:2/ ol
95,5/ Qé-,[;/ Q

5,8’

:2/ dw/ 1 =2 M(T})dw.
S2 u=1(w) S2

14
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On the other hand, considering the propositions 2.1 and 2.2, we have
OT;, = (w55 (w)]]- (4.9)
However, for each w # e € S?, there exists some surface S, 5 C B(d,4’) such that
Ol[Su.sll = [ls5 (w)]] = 25,5 (—e)l] = [[5,5 (w)]] = [[Ts]
for suitable orientations. Using this and regarding (4.4) we get
[ mi ([[T]]) = mi ([[es0 (@)D | < [mi ([[T]] = [[o55 (@)D |
< |%5] + [B(,8")| = ().

This estimation, combined with (4.8) and (4.9) gives :

E(u) =2 L ([less (w)]]) dw = 8xmi([[T]]) + O(8)  Vu € C35

and as a result

Ci&f E > 8mm; ([[T']]) + O(9) . (4.10)
4.6 Estimation for inf F* on H§5,
We put for z € Q55 :

P68 (71'(2)) if z € 0(5, 5,)
Uy =

e if z ¢ C(0,9)
We have for K > 0 independent of § and 0’ :

( |VU5,5/| =0 on 95,5/\0(5, (5’)
K '
{ |VU5,5/| < |V905,5/| |V7T| < W on 0(5,5) (4.11)
\ U5,5'|395,5, = P50

Therefore
K2 K? ,
E(usgs) < 57 < WW((S’(S )| =0(9). (4.12)
C(8,0")
As a result usgy € Hé(s . (Qs.6,5%). We should estimate L*(uss) : Pay attention that
usy € R (Qs.67, S?) as it is smooth on Q55 \I'. Proposition 2.2 and a simple topological
observation show that if T' is suitably oriented we have

Su; s = []-
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Recall that 0A = 2[[I']] and that sptA C Wy C Qs (See (4.6)) . So referring to lemma
2.2 and using (4.12) we have :

F*(U(s,y) = E(U(s,y) + 87rmr(Su5’5, s Qg,gl) S 47TM(A) + O((S)
and as a result

inf F* < F*(usp) < 4TM(A) + O(6). (4.13)

1
H(S,(S’

4.7 End of the proof
Combining (4.10) and (4.13) we get

it P — inf B = 0(9) — 4m(2m; ([[L]]) — M(A)).

But regarding (4.3) we know that
2m; ([[I]) — M(A) > 0.
Therefore by choosing § small enough, for Q = Q55 and ¢ = 55 we get :

inf F*— inf E<O.

HL(2,52) 02 (9,5?)
This shows that
inf F< inf F (4.14)
HL(Q,5?) Cx(2,52)

as ' < F™*.

We also claim that for suitable 9,

Since F' is coercive and weakly lower semi-continuous (As we mentioned in [18], the proof
is as in [5] for n = 3), its minimum is achieved by some v € H(Q, 5?). If S, # 0 we have

L(v) = sup / S, >0,
w c An_?’(ﬁ) Q
|d] < 1

which implies :
inf E<EWw) <E@w) +8rL(v)=F(v)= inf F

Hj(Q,5%) Hj(Q,5%)
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and the claim is proved. Otherwise, S, = 0. So F'(v) = E(v). If our claim is not true, v
would minimize E in HJ(f2, S*). By partial regularity theory of [20], v € R°(,5%). As
a result

inf F=F()=F(w) > inf FE,
HL(,52) 53(92,52)

where

S9(0,5%) := {u € RX(,5%);8, = 0}.

On the other hand, using the same arguments as above we can prove that

inf o F< inf F
HL(Q,5?) 59(2,52)

for suitable 6 > 0. This leads to a contradiction. So our claim is true and this completes
the proof of theorem I. [ ]

The author is grateful to Tristan Riviere for having drawn his attention to this prob-
lem and for useful suggestions. This research was carried out with support provided by
the French government in the framework of cooperation programs between Université de
Versaille and 1.P.M., Institute for studies in theoretical Physics and Mathematics, Tran.
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